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Abstract
Automatically predicting the mean opinion score (MOS) of a
synthesized speech without the reference signal with deep learn-
ing systems has been studied extensively recently and shown
great results. However, previous best systems are mostly based
on self-supervised learned (SSL) models consisting of up to
hundreds of millions of parameters making them unsuitable for
mobile or embedded applications. In this paper, we propose
MOSLight, a non-SSL-based lightweight yet powerful system
for MOS prediction. We argue that 2D convolutions are in-
efficient for audio feature processing and not ideal for tasks
where training data are scarce. To build MOSLight, we uti-
lized depthwise separable dilated 1D convolutions and incorpo-
rated multi-task learning and non-strict frame-level score clip-
ping. We conducted experiments on the Voice Conversion Chal-
lenge 2018 (VCC2018) and BVCC. Results show MOSLight
achieves great effectiveness despite being a lightweight model
trained with limited training data.
Index Terms: speech quality assessment, MOS prediction,
speech synthesis

1. Introduction
The automatic quality assessment for synthesized speech sig-
nals has been a challenging problem. Commonly, the evalua-
tion of speech synthesis systems is done via costly subjective
listening tests. Full-reference objective assessment algorithms
such as the perceptual evaluation of speech quality (PESQ) [1]
and the short-time objective intelligibility (STOI) [2] are used
as metrics in tasks where the reference signals are available (e.g.
speech enhancement) [3, 4, 5]. However, reference signals are
not always available for tasks such as text-to-speech (TTS) or
voice conversion (VC). This problem is especially prevalent for
deep neural speech codecs (e.g. Tacotron2 [6]), since their out-
put signals do not usually align with the reference signals.

Recently, deep learning models for non-intrusive speech
quality assessment have been extensively researched and shown
great potential. MOSNet [7] is the first deep learning-based
mean opinion score (MOS) prediction model for voice conver-
sion to our knowledge. One main obstacle to building a DNN-
based MOS prediction system is the scarcity of available data
since most public-available datasets that can be used for MOS
prediction are relatively small for DNN models. Researchers
have found ways to use available data more efficiently. The
mean-bias net (MBNet) [8] uses a separate bias net to predict
the bias of a certain listener towards the mean score to utilize
all individual ratings by each listener. Choi et al.[9] proposed
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multi-task learning (MTL) for MOS prediction. LDNet [10]
utilizes the encoder-decoder structure to introduce shared pa-
rameters between the mean net and the bias net and adopts Mo-
bileNet [11, 12] architecture for its encoder design.

Another way to tackle this data scarcity is to incorporate
self-supervised learned (SSL) models such as Wav2vec2.0 [13]
or Hubert [14] in MOS prediction systems [15, 16]. Due to
the generalization ability of SSL models, SSL-based systems
have achieved great results in MOS prediction. In the Voice-
MOS Challenge [17], top entries are mostly SSL-based sys-
tems. However, despite being powerful, the parameter count
of an SSL model is enormous and a considerable amount of
computing power and energy is needed to train or reference an
SSL model. This makes SSL models unsuitable for situations
where computing power is limited or low latency is required
(e.g. mobile applications and embedded systems).

Convolution neural networks (CNN) are widely used in
deep learning systems. One key factor for the effectiveness of
CNNs is the translation-equivariance property of convolutions.
CNNs are ideal for image processing, as images are translation-
equivariant in nature, that is, when two similar patterns oc-
cur on different images or different locations in the same im-
age, they often share similar semantics. CNNs are also widely
used in audio deep learning applications including MOS pre-
diction [7, 8, 9, 10]. Conventionally, the input spectrum is pro-
cessed by 2D CNNs similarly to an image. However, in this
paper, we argue that 2D CNNs are not efficient for spectrum
processing. This is because 2D convolutions assume the in-
put to be translation-equivariant along both axes, while spec-
trums are only translation-equivariant along the time axis, that
is, a pattern shift on the frequency axis completely changes the
sound. Due to the inefficiency caused by this incorrect induc-
tive bias, models may be slow to converge or stuck in bad local
optima. This may not be apparent when the training data are
sufficient because deep learning models are good at generaliz-
ing when provided with enough training data. However, for cir-
cumstances where data are scarce, as is the case for most public
MOS datasets including VCC2018[18] and BVCC [17], models
based on 2D CNNs may underperform.

In this paper, we propose MOSLight, a non-SSL-based
lightweight yet powerful model for non-intrusive speech
assessment. MOSLight is built on depthwise separable dilated
1D convolution blocks and incorporated MTL and non-strict
frame-level score clipping. We conducted experiments on
VCC2018 and BVCC datasets and despite being a lightweight
model trained with limited training data, MOSLight has
achieved great results on both datasets.
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Figure 1: Overview of the MOSLight framework

2. Proposed Method
In this section, we describe the overall framework of MOSLight
and explain some of the design choices we made. 80-
dimensional Mel frequency cepstrum coefficients (MFCCs) and
1-dimensional fundamental frequencies (F0s) are used as the
model input.

2.1. Listener-dependent modeling

Previous works have shown that instead of directly using MOS
scores as the training objective, it is beneficial to leverage all
individual scores by each listener (i.e. listener-dependent mod-
eling or LD modeling) [8, 10]. In MOSLight specifically, LD
modeling is done by utilizing an encoder-decoder structure. The
encoder learns the listener-independent representations from the
input audio features, while the decoder is injected with addi-
tional listener information and combines that with the learned
representations to predict MOS scores, as shown in Figure 1.

The encoder consists of a 1 × 1 convolution 1 layer, sev-
eral repeated convolution blocks, and another 1×1 convolution
layer as shown in Table 1. A size factor m is used to scale the
number of channels. The 1D convolution block is the core of
MOSLight and will be discussed in detail in the latter section.
The decoder consists of a 1×1 convolution layer, a range clipper
to clip frame-level scores to a reasonable range and an average
pooling layer to average frame-level scores to utterance-level
scores. The decoder is simple and has very few trainable param-
eters (about 0.3% of total trainable parameters when m = 3).
The reason for this design is that most of the time the listener
preference only adds a bias to the MOS score[10], so the de-
coder should be made simple and the encoder more powerful to
learn better listen-independent representations.

2.2. Non-strict range clipper

Frame-level scores can be highly unstable during training,
which makes models slow to converge and performance de-
graded [7]. One way to stabilize frame-level scores is to apply

1Although a 1×1 convolution technically refers to a 2D convolution,
it also refers to a 1D convolution with kernel size 1 by convention.

Table 1: MOSLight encoder framework with the model size fac-
tor m.

Input Layer Output Repeat

81× t 1× 1 conv1d 64m× t 1

64m× t
conv1d block, dilation=1

64m× t 3conv1d block, dilation=2

64m× t
conv1d block, dilation=1

64m× t 4conv1d block, dilation=2
conv1d block, dilation=4

64m× t
1× 1 conv1d

64m× t 1instancenorm1d, GELU

a hyperbolic tangent function to hard clip all frame-level scores
between 1 to 5 [19]. However, although a strict range clipper
can stabilize training greatly, it also makes the model too con-
servative when making predictions, as the predicted MOS score
is the average of all clipped frame-level scores. Therefore we
utilized a non-strict range clipper in MOSLight:

st = (2 + α) tanhht + 3 (1)

where st and ht denote the predicted frame-level score and the
input sequence at the timestep t, and α denotes the loose factor.
The score is clipped between 1−α and 5+α. When α = 0, this
is equivalent to a strict clipping. When α is higher, the clipping
is looser, and vice versa. Non-strict clipping allows the model
to be more expressive while still limiting the frame-level scores
to a reasonable range.

2.3. 1D convolution block

To replace inefficient 2D CNNs, instead of introducing com-
plicated mechanics such as adaptive kernels or attention mech-
anisms that can be difficult to design, implement and train,
we simply used 1D CNNs as the basic building blocks for
MOSLight. 1D convolutions assume translation-equivariance
along only one axis, so it is natural for 1D CNNs to pro-
cess spectrums and cepstrums. The input audio feature map is
treated like a multi-channel 1D signal. For instance, an 81×100
dimension audio feature map is treated like an 81-channel sig-
nal with a length of 100 frames.

Two important features are incorporated in the MOSLight
1D convolution block design to further improve efficiency.
Dilated convolution [20] Dilated convolutions are convolutions
whose kernels are widened by skipping a certain amount of
steps when being applied to the input. Popularized by WaveNet
[21], dilated convolutions are widely used in audio deep learn-
ing applications to enlarge the receptive field without additional
parameters. It should be noted that prior works usually choose
large dilation factor sequences because the input of their mod-
els is usually raw audio signals which require a large recep-
tive field. The input for MOSLight is condensed audio features
(MFCCs and F0) which is far shorter than raw signals depend-
ing on the hop length, so we chose smaller dilation factor se-
quences, as shown in Table 1.
Depthwise separable convolution [22] Depthwise separable
convolutions factorize a standard convolution into a depthwise
convolution, which applies a single filter to each channel, and
a point-wise convolution, which is a 1 × 1 convolution used
for combining the outputs. Depthwise separable convolutions
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Figure 2: Illustration of the structure for conv1d block used in
the MOSLight encoder. All CNN layers have the same number
of input and output channels. Kernel size 3 is set for all non-
1× 1 convolutions.

can greatly reduce the parameter count and are widely used in
lightweight models such as MobileNet [11, 12, 23].

A 1D instance normalization [24] layer and a GELU non-
linearity [25] are used following the point-wise convolution. Fi-
nally, the input is added to the output to form a skip connection,
as shown in Figure 2.

2.4. Multi-task learning

There is a great correlation between the quality of a speech and
the system by which it was synthesized. Systems with high
system-level MOS scores generally output high-score speeches
and vice versa. Therefore, by incorporating system prediction
(or called “spoofing type classification” in [9]) as an auxiliary
task, MOS prediction models can more easily distinguish good
systems from bad systems, thus improving MOS prediction re-
sults. Cross-entropy loss is used for this auxiliary task:

Lcls = − 1

U

U∑

i=1

N∑

j=1

ˆpi,j ∗ log pi,j (2)

where U denotes the number of utterances in a mini-batch, N
denotes the total number of systems, and ˆpi,j and pi,j denote
the ground truth and the predicted probability of the jth system
of the ith utterance.

2.5. Loss function

Both the utterance-level loss and the frame-level loss [7] is used
for the training of MOSLight. Mean squared error (MSE) is
used for the utterance-level loss. Formally, we can write the
utterance-level loss function as:

Lutt =
1

U

U∑

i=1

(Q̂i −Qi)
2 (3)

where Q̂i and Qi denote the ground truth and the predicted
score of the ith utterance. Clipped MSE is used for the frame-
level loss to prevent the model from overfitting the frame-level
scores. We can write the frame-level loss function as:

Lframe =
1

U

U∑

i=1

(
1

Ti

Ti∑

t=1

max [(Q̂i − qi,t)
2, β]) (4)

where Ti denotes the length of the ith utterance, qi,t denotes the
predicted frame-level score of the ith utterance at the timestep
t and β denotes the threshold below which the gradient is set to
zero.

Combining all three losses, the final loss function is:

L = Lutt + λLframe + µLcls (5)

where λ and µ are hyperparameters to balance the losses.

3. Experiments
3.1. Datasets

VCC2018 [18] The Voice Conversion Challenge 2018 is a
large-scale challenge for voice conversion and the dataset con-
tains 20580 samples generated by 38 systems (including real
speech samples). All samples are in English. Each sample
is rated by 4 listeners and there are 267 listeners in total. A
random 13580/3000/4000 for train/val/test split is used. For
VCC2018, different splits can cause the results to be vastly dif-
ferent, so we made sure all compared models are trained with
the exact same split2. There are no unseen listeners or systems
during validation and testing.
BVCC [17] This dataset is collected from past speech synthe-
sis challenges and contains 7106 speech samples3 generated by
187 systems (including real speech samples). All samples are
in English. Each sample is rated by 8 listeners and there are
304 listeners in total. This dataset was pre-split 4974/1066/1066
for train/val/test under carefully-chosen rules by the VoiceMOS
Challenge organizer. There are several unseen listeners and sys-
tems during validation and testing.

3.2. Data processing

All speech samples are downsampled to 16 kHz. A short-time
Fourier transform (STFT) with a window length of 1024 sam-
ples and a hop length of 256 samples is conducted. A Mel-
filterbank with 128 Mel filters is used to convert spectrums to
Mel spectrums. MFCCs are extracted from Mel spectrums with
a type-III discrete cosine transform (DCT). The first 80 dimen-
sions of MFCCs are utilized while the rest are discarded. The
pYIN [26] algorithm is used to extract F0s.

We utilized several data augmentation strategies for the
BVCC training set: increasing the audio speed slightly, de-
creasing the audio speed slightly, and cropping the audio. Each
strategy is utilized twice for each sample resulting in 6 times
more data than the original. For audio speed altering, we have
compared stretching and resampling and found that the pitch
shift caused by resampling is less noticeable than the artifacts
caused by stretching algorithms, so the resampling method is
used. Data augmentations are not used for VCC2018.

3.3. Training setup

On VCC2018, a mean listener is utilized during training and in-
ference like in [10]. On BVCC, the model is trained with 38
listener groups instead of individual listeners like in [27] and
during training, 5 percent of the known listener groups are re-
placed with a “unknown” listener group, which is used for in-
ference. For a classification task, the number of classes in the
BVCC training set (175 systems) is too large for the number of
training samples, so we grouped the systems in BVCC evenly
into 6 groups according to their system-level scores and used
system groups as the training target for MTL.

All models are implemented with the Pytorch framework
and trained on an RTX3070 GPU. All hyperparameters are set
the same for both datasets. We utilized the Adam optimizer with
a learning rate of 10−4. We did not utilize any schedulers. The
batch size is set to 40. We used zero padding instead of repeti-
tive padding [8] during training and implemented careful mask-
ing between individual Pytorch modules to prevent the padded
values from affecting the normalization layers. The loose factor

2The split is from https://github.com/unilight/LDNet
3The “out-of-domain” (OOD) track of BVCC was not used.
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Table 2: Experimental results on the VCC2018 test set and the BVCC test set. Numbers from the first 4 rows are taken from [10]. “ML”
and “All” stand for mean listener inference and all listener inference [10].

Model
VCC2018 BVCC

Utterance level System level Utterance level System level
MSE LCC SRCC MSE LCC SRCC MSE LCC SRCC MSE LCC SRCC

MBNet [8] 0.955 0.658 0.630 0.665 0.978 0.957 0.669 0.757 0.765 0.522 0.854 0.860
MBNet-All [10] 0.615 0.656 0.627 0.154 0.980 0.966 0.492 0.758 0.765 0.271 0.856 0.860
LDNet-ML [10] 0.479 0.648 0.613 0.021 0.983 0.979 0.333 0.795 0.794 0.169 0.885 0.886
LDNet-All [10] 0.463 0.653 0.617 0.024 0.983 0.975 0.316 0.795 0.794 0.175 0.881 0.881
MOSLight-m=1 0.478 0.674 0.635 0.094 0.973 0.953 0.297 0.818 0.819 0.172 0.881 0.884
MOSLight-m=2 0.410 0.695 0.664 0.026 0.982 0.965 0.270 0.831 0.827 0.135 0.893 0.892
MOSLight-m=3 0.427 0.700 0.667 0.050 0.986 0.974 0.262 0.844 0.842 0.155 0.903 0.904
MOSLight-m=4 0.400 0.703 0.672 0.014 0.982 0.972 0.247 0.842 0.836 0.122 0.909 0.905

α in Equation 2 is set to 6. The threshold β in Equation 4 is
set to 0.4. The loss balancing factor λ and µ in Equation 5 are
set to 0.2 and 0.5 respectively. It should be noted that all hyper-
parameters are set empirically and we did not conduct a formal
hyperparameter search. Three metrics, i.e. MSE, linear cor-
relation coefficients (LCC), and Spearsman’s rank correlation
coefficients (SRCC) for both utterance-level and system-level
are used. We chose the checkpoint with the best utterance-level
SRCC on the validation set among 50 epochs.

3.4. Experimental results

Table 3: Resource usage of LDNet and MOSLight. Runtime
and million mult-adds are calculated by inputting 6 seconds of
audio (for the hop length of 256 samples set by both systems,
the input audio feature map is 375 frames in length). Runtime
is averaged from 100 runs. All runs are done on a Ryzen CPU.

Model Million
Params

Million
Mult-Adds

Runtime
(s)

LDNet-ML [10] 0.920 486 0.362
MOSLight-m=1 0.089 32.4 0.082
MOSLight-m=2 0.334 123 0.091
MOSLight-m=3 0.734 272 0.104
MOSLight-m=4 1.29 480 0.127

We have tested 4 configurations of the MOSLight, with the
model size factor m ranging from 1 to 4, on VCC2018 and
BVCC. We chose LDNet [10], a state-of-the-art lightweight
MOS prediction system, as our baseline system. The experi-
mental results are shown in Table 2. We have also conducted
a system complexity comparison, as shown in Table 3. “All
listener inference” mode LDNet requires running the decoder
multiple times depending on the number of listeners, making it
far slower, so it is not shown on the complexity comparison.

Table 2 shows the smallest “m=1” MOSLight model,
with a tenth of the parameter and mult-add count of
LDNet, can achieve comparable results to LDNet on
VCC2018 and outperforms LDNet on BVCC. The “m=3” and
“m=4” MOSLight models outperform LDNet significantly on
VCC2018 utterance-level metrics and on all BVCC metrics de-
spite similar or less resource usage.

It should be noted that on BVCC, the system-level SRCC
between the training set and the test set is 0.905, so in the-
ory, this should be near the top limit of systems that do not

utilize any external data [28]. Table 2 shows both the “m=3”
and “m=4” MOSLight models have already reached near this
theoretical system-level SRCC limit, showing the effectiveness
of the MOSLight framework.

3.5. Ablation study

Table 4: Ablation study of MOSLight. “-X” and “+X” denote
component X is removed from or added to the framework. Only
the utterance-level SRCC and system-level SRCC on the BVCC
test set are shown due to the space limitation.

Model Utterance
SRCC

System
SRCC

MOSLight-m=3 0.842 0.904
- clipper 0.829 0.895
- clipper + strict clipper 0.827 0.885
- MTL 0.827 0.882
- frame-level loss 0.800 0.865
- dilation 0.839 0.897
- dw separable conv + normal conv 0.819 0.885
- data augmentation 0.815 0.892

We have conducted several experiments on BVCC to show
the effectiveness of each component of MOSLight, as shown in
Table 4. It should be highlighted that by removing the frame-
level loss, the results suffer the most in the listed experiments,
indicating although score clipping is used, the frame-level loss
is still necessary for stable training. It also should be pointed
out that by replacing the depthwise separable convolutions, the
parameter count of MOSLight increased by about 3 times but
the model suffered from overfitting.

4. Conclusions
In this paper, we proposed an efficient MOS prediction model
MOSLight, which is built on depthwise separable dilated
1D CNNs and incorporated MTL and non-strict range clip-
ping. Experimental results show small configuration MOSLight
achieved comparable results to LDNet baselines with far less re-
source usage while big configuration MOSLight outperformed
LDNet. We also conducted an ablation study to prove the effec-
tiveness of each module. For future work, we plan to explore
more complicated structures than 1D CNNs and try to incorpo-
rate more domain knowledge into MOS prediction models.
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