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Abstract
Accent recognition (AR) is challenging due to the lack of

training data as well as the accents are entangled with speakers
and regional characteristics. This paper aims to improve AR
performance from two perspectives. First, to alleviate the data
insufficiency problem, we employ the self-supervised learning
representations (SSLRs) extracted from a pre-trained model to
build the AR models. With the help of SSLRs, it gains signif-
icant performance improvement compared with the traditional
acoustic features. Secondly, we proposed a persistent accent
memory (PAM) as contextual knowledge to bias the AR mod-
els. The accent embeddings that are extracted from all training
data by the encoder of AR models are clustered to form an ac-
cent codebook, i.e. PAM. In addition, we propose diverse atten-
tion mechanisms to investigate the optimal utilization of PAM.
We observe that the best performance is obtained by selecting
the most relevant accent embeddings.
Index Terms: WavLM, Self-supervised learning, representa-
tion, accent recognition, persistent accent memory, Conformer

1. Introduction
Accent recognition (AR) or identification is important but chal-
lenging. It is vital because the accent not only contains the
speaker’s personal voice characteristics but also includes re-
gional information, which is potentially crucial for speaker
recognition [1–3]and speech recognition [4–12]. Unfortunately,
AR is also challenging since large scale accent-labeled data is
hard to come by, and therefore it is a low-resource task. As such,
to obtain a desirable AR system, one needs to fully exploit both
data and modeling efficiency simultaneously.

To achieve state-of-the-art AR performance, [13] employed
a series of data augmentations (DAs), as well as novel model-
ing frameworks. Specifically, the DAs include speed perturba-
tion [14], noise speech corruption [15], and text-to-speech that
synthesizes diverse accented speech data, resulting in up to 10
times data increase. Furthermore, it also proposed to employ
phone posterior-gram as AR model input features, achieving
better performance over the conventional filter-bank features.
Recently, to realize improved AR performance, [16] made ef-
forts on novel modeling work and proposed an accent shift ap-
proach to the AR task. The method requires acoustic transcripts
to estimate linguistic-acoustic bimodal similarity during train-
ing and test processes. However, the quality of ASR transcripts
can not always be guaranteed when accents are diverse. Like-
wise, in [17], a joint speech and accent recognition framework is
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proposed, realizing mutual performance benefits for either task.
In this paper, we attempt to make efforts to boost AR per-

formance from two perspectives. We first attempt to alleviate
the data insufficiency issue by exploiting self-supervised learn-
ing representations (SSLRs) that are learned from recently pro-
posed WavLM [18] pre-trained with self-supervised learning
(SSL) method different from Wav2vec 2.0 [19, 20], as well as
HuBert [21]. The advantages of WavLM mainly come from
its consideration of speech denoising and yielding much perfor-
mance improvement on non-speech recognition tasks in addi-
tion to ASR task, such as speaker recognition [22], speech sep-
aration [23], as well as speech enhancement [24] and speaker
diariazation [25], etc. In this paper, we show that employing
SSLRs can significantly improve AR performance compared
with the systems that are trained from scratch with filter-bank
features. More importantly, we propose a novel persistent ac-
cent memory (PAM) based attention mechanism for AR in light
of efficient modeling efforts. The PAM, namely a codebook
of clustered embeddings, is obtained by clustering overall ut-
terance level accent embeddings that are extracted using AR
model trained with WavLM SSLRs. It acts as an accent-aware
prompter that lets the audio stream attends to the presence of
accent context for each time being. To realize better accent in-
formation utilization, we try diverse attention mechanisms, and
the best performance is achieved with the method that selects
the best relevant memories with the pooled utterance level fea-
tures from the output of the encoder.

The main contributions of this paper include the following
aspects: 1) To the best of our knowledge, we are the first to em-
ploy WavLM learned representations on AR task and demon-
strate its effectiveness with diverse configurations. 2) We pro-
pose to use the overall training data to build the persistent accent
memory that is compact but representative and empirically ef-
fective. 3) To well exploit accent contextual information, we
attempt diverse attention mechanisms that make further perfor-
mance improvement.

2. Related work
Self-supervised learning (SSL) has been drawing increasing at-
tention in speech processing society [26–28]. However, prior
SSL-based pre-trained models are mostly focused on ASR per-
formance improvement. AR as a downstream task hasn’t been
fully attentive. Recently, WavLM [18] has given more atten-
tion to the speaker-related tasks, as well as ASR task. As a re-
sult, it can achieve improved results on a wide range of speech-
processing tasks. Therefore, we propose to use the SSLRs
learned from WavLM as input features in this work for the AR
recognition. Moreover, we also found SSLRs from different
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layers have different performance for different accents, and a
weighting summary of SSLRs from different WavLM layers
are also attempted. On model efficiency level work, our per-
sistent accent memory is inspired by the prior works [29] that
are aimed for improving ASR recognition. Here, we extend the
idea for AR, and more efforts are focused on how to fully ex-
ploit the accent context information to boost accent recognition.

2.1. WavLM for SSL Representation

WavLM is a large-scale self-supervised (SS) pretraining frame-
work for full-stack speech processing [27], using a modified
Transformer [30] as the backbone. The training objective is
to realize masked speech denoising and prediction. Unlike
Wav2vec 2.0 [20] which employs contrastive loss [31] as an ob-
jective function, WavLM adopts masking prediction to train the
model, which is the same as HuBERT [21]. But different from
HuBERT, WavLM employs more unlabelled and noisy data.
The noisy data include overlapped speech, which implicitly
makes the WavLM yield much better performance on speaker-
related tasks as mentioned. Therefore, we employ WavLM to
generate SSLRs for our AR classifiers in this work.

3. Proposed Method

3.1. Persistent Accent Memory

One of the key components of our AR system is persistent
accent memory (PAM). Essentially, PAM is a 256-codeword
(clustered embedding) codebook that is clustered from the en-
coder output of AR model trained with WavLM SSLRs, and the
overall embeddings are from the 160-hour accented speech in
training dataset [32]. To be concise, the training dataset con-
tains 8 accents. We cluster each accent embeddings into 32-
embedding clusters before merging them into a codebook end-
ing up with 256 embeddings which is denoted as PAM. Here,
”persistent” indicates that those 256 accent embeddings in the
codebook/memory are not updated during training. The entire
process of PAM building can be clarified with the following
equations:

eji = Concat(mean(H j
i), std(Hj

i ))

Ej = {Ej
1, . . . , E

j
C} = k-means(ej1, . . . , e

j
n) (1)

EPAM = {E1, . . . , EJ}

where the row of “Concat” means a pooling operation; Hj
i ∈

T × Rd refers to the encoder output of AR model trained with
SSLRs for the i-th utterance of accent j, C=32, and J=8 re-
spectively. To realize PAM-based AR, the training is performed
to minimize the loss as follows:

LAR = log p(Y |EPAM, Henc) (2)

where Y is accent label distribution, and |Y |=8 in this work;
Henc is the output of the accent classifier encoder. During accent
inference, we employ the following rule to recognize the accent:

Yj = argmax
Yj

log p(Yj |EPAM, Henc) (3)

where 0 ≤ j < J , and J=8 as mentioned.
With the training and testing rules defined in Eq. 2 and

Eq. 3, the question is now how to sensibly exploit the PAM in
practice.

To fully exploit the PAM to boost the AR performance,
we propose two categories of methods, where one is the PAM-
based attention fusion method, and the other is an N-best per-
sistent accent memory selection method by similarity measure
and we can think of it as a kind of attention variant.

3.2. PAM based attention fusion

The attention-based method includes both self-attention and
cross-attention, and the attention is performed either on the
frame level or utterance level.

3.2.1. Appending PAM for self-attention fusion

Inspired by [29], we use a linear layer to transform the dimen-
sions of EPAM to be consistent with the encoder output Henc,
and append the embeddings of EPAM to the encoder output se-
quence Henc, and conduct self-attention operation on the overall
sequence. The entire process can be interpreted with the follow-
ing expressions:

Z = Stack(Henc, EPAM)

Z̄ = MHA(ZWQ, ZWK , ZWV )

Ẑ = Z̄ + Z (4)

Z̆ = Concat(mean(Ẑ), std(Ẑ))

Y = Softmax(Z̆)

where MHA refers to multi-head attention operation, and the
row of “Concat” also stands for a pooling operation as in Eq. 1.
The equation referred to as Eq. 4 suggests that after appending
the PAM embeddings EPAM to the encoder output Henc, we per-
form self-attention on the combined sequence. The motivation
is to bias the encoder output by letting the encoder output be
aware of the actual accent context, so as to lead to improved
AR performance.

3.2.2. Frame level cross-attention fusion

What is proposed in Section 3.2.1 is a little bit implicit in using
the PAM embeddings as accent context, here to take the PAM as
an explicit accent context, we employ cross attention similar to
what is proposed in [29] for context-aware speech recognition,
where the attention is performed on the frame level. In practice,
the encoder output Henc is a query, and the embeddings of the
PAM acts as key and value; the typical part of the process is as
follows:

Z̄ = MHA(HencW
Q, EPAMW

K , EPAMW
V )

Ẑ = Z̄ +Henc (5)

3.2.3. Utterance level cross-attention fusion

Instead of biasing the encoder on frame level as Section 3.2.2,
we can bias the output of the encoder on utterance level by pool-
ing, which could be much simpler. Besides, since the PAM
embeddings are also on utterance level, this realizes all atten-
tion components, such as query, key, and value, are on utterance
level, making the attention have clear semantic meaning. The
utterance level cross-attention is performed as follows:

Z = Concat(mean(Henc), std(Henc))

Z̄ = MHA(ZWQ, EPAMW
K , EPAMW

V ) (6)

Ẑ = Z̄ + Z
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Figure 1: N-best persistent accent memory selection

3.3. N-best PAM selection

The similarities of the prior proposed attention methods are
simple and straightforward, but there are limitations. For in-
stance, when we attend the PAM, and the overall embeddings
in the PAM are equally considered, this would result in redun-
dancy as well as scalable issues as more accents are added. In
this section, we propose an N-best based PAM selection method
to resolve the problems as mentioned. Here, N denotes the
number of embeddings selected from PAM according to the
similarity scores between embeddings in PAM and the encoder
outputs. The entire architecture of the N-best PAM selection
method is illustrated in Figure 1.

For implementation, we first pool encoder output Henc to
generate Z on utterance level as in Section 3.2.3, we then calcu-
late the similarity between Z and each embedding in the PAM,
and select N-best embeddings according to similarity scores.
Finally, we merge such N-best embeddings with the encoder
output to perform a self-attention operation as in Section 3.2.1.
Specifically, the whole procedure is as follows:

H̄ = Concat(mean(Henc), std(Henc))

Si = Cosine-dist(H̄, Ei
PAM) (7)

Pi = Gumbel-Softmax(Si) (8)

EN-best
PAM = topk({Pi}) ∗ EPAM (9)

Z = Stack(Henc, E
N-best
PAM )

where Cosine-dist stands for cosine distance (similarity) esti-
mation, and Gumbel-Softmax refers to Gumbel softmax that is
implemented as follows:

Pi =
exp(log(Si + gi)/τ)∑J

j=1 exp(log(Sj + gj)/τ)
(10)

where gi is a random number subjective to 0-1 Gaussian distri-
bution, and τ is a temperature hyper-parameter [33].

The N-best PAM selection method is actually an “attention”
variant, since we can also use cross-attention to estimate simi-
larity scores between Z and the embeddings of PAM, and they
are attention factors that are estimated with a normal softmax
operation. However, we found the conventional attention yields
distribution that is much sharper and close to a one-hot vector.
It does not facilitate N-best selection by the Gumbel-Softmax.

4. Experiments And Results

4.1. Data Description

In this paper, we conduct all of our experiments on the Ac-
cented English Speech Recognition Challenge (AESRC2020)
dataset [32], which is also known as a benchmark for the
English AR task since 2020. This dataset contains 8 ac-
cents of English, which are American(US), British(UK), Chi-
nese(CHN), Indian(IND), Japanese(JPN), Korean(KR), Por-
tuguese(PT), and Russian(RU) accent respectively. The dura-
tion of each accent is balanced among the dataset.

4.2. Experimental setup

Our AR models are performed using the Transformer frame-
work based on ESPnet toolkit [34]. We use either 83-dim
Fbank-pitch features or 1024-dim representations extracted
from WavLM Large [18] to build our AR models. Following
the work in [17], the AR models are configured with a 12-layer
encoder and a 6-layer decoder with 4-head attention in a multi-
task way where the ASR task is utilized as an auxiliary task.
The weighting factors for ASR and AR tasks are set to 1 and
0.1 respectively. The number of embedding clusters for each
accent is 32 and the temperature of Gumbel-softmax is set to
2.0 for the AR task. Besides, SpecAugment [35] is employed at
the front-end.

4.3. Results

Table 1 presents the AR accuracy results on the test set us-
ing the SSLRs of the WavLM as features. The model trained
on SSLRs achieves significant performance improvement com-
pared with using filter-bank (Fbank) features [17], except for
the case of which SSLRs are output from the 8th layer of the
WavLM encoder, that is, 69.9% being the worst. Besides, we
have examined using output either from a different single layer
or from the combined layers of the WavLM encoder. The per-
formance varies a little bit for different outputs. For instance,
layer-12 yields the best accuracy for US, UK, and KR accents,
while layer-20 yields the best performance, i.e., 79.8% on aver-
age and the best on accent JPN, i.e., 69.0%, and the final layer,
i.e., layer-24, gains the best accuracy on the three accents, that
is CHN, IND, and RU. For the combined case, namely, the
weighted sum, of which the weight is learned during model
training, the performance is moderate.

To validate the efficacy and generality of our proposed
methods, we perform 3 categories of experiments: one is “Or-
acle”, the embeddings of each accent are extracted from the
corresponding best-performance AR model in Table 1 to build
PAM; the other two are based on the final layer output and
the overall weighted sum output, denoted as “layer-24” and
“layers:1-24” respectively. Particularly, we use the weighted
sum “layers:1-24” as the benchmark.

Table 2 reports the AR results of all the proposed meth-
ods in Section 3 and the corresponding variants for further clar-
ification. The proposed methods in Section 3.2.1 is denoted
as “Append-SA” for PAM appending and mixed self-attention
work; likewise, the work in Section 3.2.2 is denoted as “Frame-
CA” for frame level based cross-attention; Section 3.2.3 work is
named as “Utt-CA” for utterance level based cross-attention; for
further clarity, we also perform the combined approach, called
as “Utt-CA+Append-SA”, that is, we first do utterance-level
cross-attention and then perform appending followed by mixed
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Table 1: AR accuracy (%) using SSLRs from WavLM on the test set.

System Input
Features - SSLR

source
Average
accuracy US UK CHN IND JPN KR PT RU

0 Fbank Baseline - 73.7 52.4 91.6 72.8 90.9 63.6 77.3 77.6 71.0

1

WavLM
SSLR

Single layer

layer-8 69.9 66.4 90.7 64.3 85.7 66.1 64.4 68.1 57.3
2 layer-12 78.3 71.6 95.4 63.8 92.8 67.3 82.5 81.3 76.1
3 layer-16 79.3 67.9 94.4 77.8 94.5 63.7 80.9 81.9 78.7
4 layer-20 79.8 69.0 93.0 78.5 94.6 69.0 81.1 80.5 76.9
5 layer-24 77.3 61.6 94.8 80.1 94.6 59.5 77.6 76.5 80.0
6 Weighted Sum layers:1-24 77.5 63.3 93.7 78.8 95.0 63.0 82.0 65.0 85.2
7 layers:8,12,16,20,24 78.5 66.3 92.4 79.0 96.1 58.3 77.4 80.2 83.7

Table 2: AR accuracy results (%) of the proposed methods using persistent accent memory on the test set.

System Methods PAM
source scheme

Average
accuracy US UK CHN IND JPN KR PT RU

6 Weighted Sum (Baseline) - 77.5 63.3 93.7 78.8 95.0 63.0 82.0 65.0 85.2

8 Frame-CA

Oracle

77.6 65.9 91.8 76.3 95.7 61.8 80.8 72.0 82.3
9 Utt-CA 78.6 58.7 94.1 82.4 96.0 71.3 73.4 78.0 82.1
10 Append-SA 78.9 76.7 91.1 70.0 97.5 69.5 68.8 79.2 81.9
11 Utt-CA+Append-SA 79.9 61.2 94.4 78.6 96.2 71.4 77.9 79.5 87.1

12
N-best

PAM selection

AW-similarity Oracle 79.5 63.0 94.1 73.2 96.4 68.8 81.2 83.1 83.0
13

Cosine Similarity
layer-24 80.9 65.4 93.9 75.9 96.7 74.2 84.1 78.3 85.0

14 layers:1-24 80.9 64.0 94.6 77.2 97.1 72.2 82.4 80.0 86.1
15 Oracle 81.4 66.0 93.2 82.4 94.5 72.1 83.3 78.4 87.2

Table 3: Effect of N in the N-best PAM selection method

N (of N-best) 8 16 32 64 128

Accuracy (%) 81.4 80.9 80.4 82.0 81.5

self-attention work. More importantly, the N-best method has
two approaches to estimate the similarity: one is based on co-
sine distance, and the other is the attention-weight-based simi-
larity estimation.

From Table 2, we notice all proposed methods get im-
proved results over the baseline. More interestingly, the meth-
ods Utt-CA, Append-SA, and Utt-CA+Append-SA get obvi-
ously better results on IND, JPN, and RU accents, compared
with what is shown as the best in Table 1. Additionally, the Utt-
CA+Append-SA surpasses the best method with the SSLR from
layer-20 in terms of on average accuracy across the overall 8
accents. Moreover, the N-best PAM selection methods achieve
the best performance, and they are 80.9%, 80.9%, and 81.4%
from an average perspective. Under the oracle scenario, the N-
best PAM is the best performer, getting 81.4% accuracy. How-
ever, naively taking the final layer output (layer-24) and the one
with the overall weighted sum setting (layers:1-24), the N-best
method still outperforms and is just slightly worse than the ora-
cle method, that is 80.9% versus 81.4% on average. Finally, it is
worthwhile to mention that we also attempt the “AW-similarity”
method to estimate the similarity between embeddings, and we
find the attention weights are sharply distributed (biased to a
couple of top embeddings from the PAM), making it harder for
us to perform the N-best selection. We hypothesize such a sharp
distribution results in a suboptimal update of model parameters
and yields worse results than that of cosine distance measure.

In addition, we investigate the effect of different configura-
tions for the N -best select method and present the comparison
between different N values in Table 3. It is not surprising that
the proposed N -best PAM exhibits higher performance than the
baseline approach. The proposed model with N = 64 shows
the highest accuracy among all model configurations. However,
a higher N does not necessarily yield higher performance while
it leads to higher computational complexity. This implies that
preliminary experiments could be useful to determine an appro-
priate value of N .

5. Conclusion
In this work, we incorporated self-supervised learning repre-
sentations (SSLRs) in our proposed persistent accent mem-
ory (PAM) method to improve AR. We employed SSLRs ex-
tracted from a pre-trained WavLM model to address the data
insufficiency problem in the accent recognition task. The use
of SSLRs shows significant performance improvement com-
pared to traditional acoustic features, which indicates the effi-
cacy of SSLRs in accent recognition. In addition, we proposed
a PAM approach with various attention mechanisms to improve
accent recognition. We demonstrated the effectiveness of our
proposed method on a public accent benchmark dataset, and the
best-performing system that selects the N-best relevant embed-
dings from the persistent accent memory has achieved further
improvements for accent recognition.
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