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Abstract
One of the challenges in speaker verification is domain mis-
match and other effects such as language and emotion. Normal-
ization techniques such as Batch Normalization (BN) have been
proven effective in improving neural network training and are a
popular choice in many speaker verification networks. How-
ever, BN may not be able to adequately normalize the feature
map for speaker verification. In this work, we investigate sev-
eral instance-based normalization methods which are more suit-
able for speaker verification. We propose the Temporal Nor-
malization layer, which normalizes along the time dimension,
and show its effectiveness on four different datasets. Exper-
iments on VoxCeleb2 show a relative improvement of 24.3%
and 46.15% in terms of EER and DCF over fwSE-ResNet34
in VoxCeleb1-O. Furthermore, we present a systematic evalua-
tion of our networks against three other datasets, namely Thai-
Central, THAI-SER, and CREMA-D to show its robustness on
language and emotional variants.
Index Terms: Deep Neural Network, Speaker Verification,
Normalization Layer

1. Introduction
Speaker verification is the task of validating the identity of
a person based on their speech signal. Recent developments
in speaker verification have been dominated by deep-learning-
based approaches. For example, Emphasized Channel Atten-
tion, Propagation and Aggregation in time-delay neural network
(ECAPA-TDNN) [1], a network based on one-dimensional con-
volution, is a popular baseline. More recent architectures in-
corporate ideas from the computer vision community, such as
ResNets [2], and squeeze-and-excitation networks [3, 2].

Normalization layers have been shown to improve the ro-
bustness and performance of neural networks in many fields.
Batch Normalization (BN) [4] and to a lesser extent Instance
Normalization (IN) [5] have been a staple for CNN models
especially for computer vision. Layer Normalization (LN)
[6] has been shown to improve the performance of networks
such as recurrent neural networks and transformers in natural
language processing [7]. Recently, [8] proposed Relaxed In-
stance Frequency-wise Normalization (RFN), a normalization
performed on the input layer, to combat domain mismatch for
the task of scene classification and speaker verification. How-
ever, no systematic evaluation has been performed to measure
the effectiveness of different normalization layers on the task of
speaker verification and their effect on robustness.

Frame-level feature extraction has been shown to be effec-
tive for speaker verification on short utterances [9]. In this
work, we introduce a new normalization module called Tem-
poral Normalization (TN), which is an instance normalization

that calculates the statistics on the temporal dimension. This
can be considered an ensemble of multiple frame-level feature
extractors. Although normalization has been common in neural
networks, TN has never been considered. The motivation for
TN is slightly different from other normalization layers. Tem-
poral normalization tries to decouple the features from different
frames in order to create a frame-based ensemble-like model.
Applying TN can be done by replacing all the normalization
layers with TN and can also be combined with other normaliza-
tion modules for further improvements.

The proposed methods were evaluated in matched and
mismatched conditions using four datasets: VoxCeleb2, Thai-
Central, THAI-SER, and CREMA-D. On VoxCeleb2, our meth-
ods outperformed state-of-the-art baselines by a relative score
of 46.15%. Our model exhibits less degradation when evaluated
on mismatch conditions such as emotional speech and different
languages. Moreover, further analysis of the model embeddings
has shown that TN can help remove emotional information.

2. Background on Normalization Layers
Normalization layers are an essential part of a network that
have been shown to help improve convergence and accuracy.
Several normalization techniques have been proposed, such as
Batch Normalization (BN) [4], Instance Normalization (IN) [5],
Group Normalization (GN) [10], and Layer Normalization (LN)
[6]. Each differs mostly in how the mean and variance are calcu-
lated. For the speaker verification task, instance-based normal-
ization is preferable since it does not require batch processing.

Recently, Kim et al. proposed two normalization lay-
ers: Residual Normalization (RN) [11] and Relaxed Instance
Frequency-wise Normalization (RFN) [8] for the acoustic scene
classification task. RN can be described as RN(x) = λx +
FN(x) where x is the input to the layer, FN refers to instance
normalization that normalizes along the frequency dimension,
and λ is an interpolation weight. RFN is a linear interpola-
tion between features from LN and FN, namely RFN(x) =
λLN(x) + (1 − λ)FN(x) where LN is Layer Normaliza-
tion. These normalization techniques were performed on the
input layer to help mitigate domain mismatch. The interpola-
tion helps maintain information that might be destroyed when
normalized across frequencies.

3. Method
3.1. Temporal Normalization

[8] shows that the feature along the frequency dimension carries
more domain-relevant information than the channel dimension.
However, it has been shown that for speaker verification, tem-
poral (or frame-level) features also carry speaker-relevant infor-
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Figure 1: Different instance-based normalization methods.
Each cube represents a single instance. The highlighted pixels
are normalized with the same mean and variance, calculated by
aggregating the values of these pixels.

mation [9].
Temporal Normalization is an instance-based normalization

layer that tries to normalize in the temporal dimension. Con-
sider a three dimensional feature map input to the normalization
module, xijk ∈ RC×F×T, with C, F , T denoting the number
of channel, frequency, and time dimensions, respectively. TN is
computed as follows:

x̂ijk =
xijk − µk√

σ2
k + ϵ

(1)

where x̂ijk is the output from the normalization module, µk and
σ2
k is the average and variance of that time dimension, and ϵ is a

small number to avoid division by zero. The layer also includes
an element-wise affine transform step. Figure 1 illustrates the
differences between instance-based normalization methods. For
Frequency Normalization (FN), the µk and σ2

k are replaced with
µj and σ2

j , respectively. Note that TN should not be confused
with ceptral mean normalization (CMN), which averages the
MFCC over the time dimension. This is more analogous to FN
than TN. These normalization techniques can also be applied
together since they are designed to handle different aspects of
speech processing.

3.2. Relaxed Temporal-Frequency Normalization

Similar to the RFN, we can also combine TN with another nor-
malization module to preserve information that has been lost
in the temporal dimension. As a result, we propose Relaxed
Temporal-Frequency Normalization (RTFN), which can be de-
scribed as x̂ = λTN(x)+ (1−λ)FN(x), where λ is an inter-
polation weight hyperparameter. This alleviates the loss of in-
formation from the normalization in the temporal and frequency
dimensions.

3.3. Incorporating normalization layers

These normalization layers can be included anywhere to re-
place the typical BN layers in ResNet-like models. For the
attention layer in the attentive statistics pooling layer [12],
there is a BN layer which cannot be replaced as described
above because the input of the layer only has two dimensions,
[Channel×Frequency, Time]. However, similar to Equation 1,
we can still normalize using the time dimension.

All BN layers in the ResNet model are replaced with our
normalization layers, unlike [8] which normalizes only the in-
put. Moreover, we reduce the number of normalization lay-
ers and activation layers according to [13] which decreases the
training time while maintaining accuracy.

4. Experimental Setups
4.1. Datasets

We performed experiments on four datasets, namely VoxCeleb,
Thai-Central, THAI-SER, and CREMA-D. Our network was
trained on VoxCeleb2 [14] consisting of 5994 speakers with
the provided train list (only the dev partition). VoxCeleb1 [15]
(1,251 speakers) was used as a test set with the provided three
test lists (original, extended, and hard) [16].

Thai-Central [17] is a read speech dataset for automatic
speech recognition collected via crowdsourcing. It was used to
test the effectiveness of our methods in a different language and
was also used as a cross-language test set. The original train-
ing dataset consists of 5,476 speakers which is comparable to
VoxCeleb2. However, the total length of the dataset is only 782
hours which is less than half of VoxCeleb2. Only speakers with
more than five utterances were included. We randomly split the
data into train, development, and test sets, resulting in 4,928,
55, and 493 speakers, respectively.

We also tested our models on two speech emotion datasets.
THAI-SER dataset1 is a Thai dataset consisting of 200 speak-
ers. The dataset was collected by pairing actors together. The
actors were tasked with improvising different situations illus-
trating five emotions (neutral, anger, happiness, sadness, and
frustration). Besides improvised situations, there is also a small
portion of scripted utterances. There are three recording en-
vironments (two studios and a Zoom-based recording), which
made for a challenging dataset. We selected only utterances
longer than three seconds and treated them as a test set. The
other emotional speech dataset is CREMA-D [18] which is a
multimodal dataset with multiple emotions per speaker. The
dataset comprises 91 actors with six emotions (anger, disgust,
fear, happiness, neutral, and sadness) per actor. Only the au-
dio was used to perform speaker verification. Since a speaker
with different emotions can have different acoustic parameters
such as pitch and fundamental frequencies, the THAI-SER and
CREMA-D datasets, which introduce emotion variations, make
verifying a speaker more difficult.

4.2. Baselines and base architectures

4.2.1. ECAPA-TDNN

The ECAPA-TDNN network2 [1, 19] is an improved version of
x-vector [20]. The network starts with a 1-dimensional convo-
lution layer, followed by three layers of 1-dimensional Squeeze
and Excitation residual blocks. Three output maps from three
layers are concatenated before feeding into the Attentive Statis-
tics Pooling layer [12]. The final layers are fully connected lay-
ers in order to create an embedding vector. The network comes
with BN layers in residual blocks.

4.2.2. ResNet-based Architectures

The ResNet architecture is a popular choice for speaker em-
bedding extraction. In our work, we focus primarily on
SE-ResNet34. The network starts with a 2-dimensional con-
volutional layer. The output feature map is fed through the four
stages. In each stage, there are 2-dimensional squeeze and exci-
tation layers [21] with BN [4]. After the last stage, the Attentive
Statistics Pooling layer [12] is used to summarize the informa-
tion.

1https://github.com/vistec-AI/dataset-releases/releases/tag/v1
2https://github.com/TaoRuijie/ECAPA-TDNN
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Table 1: Evaluation results on four datasets: VoxCeleb1, Thai-Central, THAI-SER, and CREMA-D. The model was trained on Vox-
Celeb2. Rows with the “+” symbols use fwSE-ResNet34 as the base model.

VoxCeleb1-O VoxCeleb1-E VoxCeleb1-H Thai-Central THAI-SER CREMA-D
EER DCF EER DCF EER DCF EER DCF EER DCF EER DCF

ECAPA TDNN 1.16 0.151 1.27 0.149 2.42 0.252 9.25 0.540 7.96 0.556 13.67 0.847
SE-ResNet34 1.15 0.120 1.34 0.162 2.53 0.244 8.06 0.498 6.46 0.480 13.55 0.831

fwSE-ResNet34 1.07 0.130 1.23 0.144 2.39 0.230 7.58 0.452 5.64 0.427 13.04 0.831
+ RFN (input) [8] 1.11 0.127 1.19 0.140 2.23 0.219 7.59 0.420 5.74 0.430 12.81 0.812

+ LN 0.97 0.104 1.13 0.133 2.17 0.211 7.38 0.429 5.48 0.406 12.19 0.788
+ FN 0.99 0.110 1.12 0.129 2.15 0.213 7.64 0.440 5.72 0.424 12.72 0.774

+ TN (Ours) 0.89 0.079 1.09 0.120 1.99 0.199 7.04 0.433 5.48 0.397 12.63 0.800
+ FN + LN 0.96 0.097 1.12 0.128 2.12 0.209 7.64 0.452 5.53 0.407 12.31 0.782

+ FN + TN (Ours) 0.81 0.070 1.03 0.121 1.92 0.188 6.99 0.418 5.36 0.381 12.16 0.777

In this work, we implemented two kinds of ResNet archi-
tectures as baselines: basic SE-ResNet34 as described above
and fwSE-ResNet34 [2]. FwSE-ResNet34 adds a learnable fre-
quency positional encoding into the input of each residual block
and incorporates frequency-wise squeeze and excitation, which
re-scale the feature along the frequency dimension instead of
the channel dimension.

4.3. Training Details and Evaluation Measures

Our training setup followed [19]. The models were trained on
two-second segments randomly extracted from the data. We
used Kaldi’s Voice Activity Detection based on the Kaldi Aspire
recipe (“egs/aspire/s5”) to segment the data. The input features
to the neural network are 80-dimensional log mel spectrogram
with mean normalization, a window size of 25 ms and a frame
shift of 10 ms. Following [2], we trained the network with the
Adam optimizer [22] and used the cyclic learning rate sched-
uler (triangle2 policy) with a base learning rate of 1e-8 and a
maximum learning rate of 1e-3. We trained the model with a
cycle of 30 and 10 epochs for VoxCeleb2 and Thai-Central, re-
spectively. The networks were trained for three full cycles with
a mini-batch size of 128. Additive angular margin loss [23] was
used to train the network with scale sAAM = 30 and mAAM =
0.2. Moreover, we augmented each chunk of utterance with five
types of noise (music, babble, noise, television noise, and re-
verberation) by combining all the noises in the MUSAN dataset
[24] and the RIR dataset [25]. The SpecAugment [26] algorithm
was applied to all log mel spectrograms fed into the network and
randomly masked 0 to 8 bins in the frequency domain and 0 to
10 frames in the time domain. All systems were implemented
in Pytorch [27].

For evaluation, we extracted the log mel spectrogram from
the entire utterance and sampled five 3-second equally-spaced
segments. If any utterance had less than three seconds, it was
padded using ’wrap’ mode until it reached three seconds. Co-
sine similarity was used as the distance metric to compute the
score between each embedding pair. The final score was a mean
score between chunks of the utterance and the entire utterance.
Equal Error Rate (EER) and the minimum decision cost func-
tion (DCF) [28] with Ptarget = 1e−2 with CFA = Cmiss = 1
were used as evaluation metrics.

As the Thai-Central, THAI-SER, and CREMA-D datasets
are not standard speaker verification datasets, they do not come
with test lists for speaker verification. Thus, we randomly
paired the speakers with 4 positive and 4 negative samples for
each utterance. Each utterance cannot be paired with itself, and
each pair cannot be duplicated. As a result, there are 246,045,

353,480, and 59,040 pairs of speakers, and the average length of
each utterance in the test list are 5.84, 4.68, and 1.84 seconds for
Thai-Central, THAI-SER, and CREMA-D, respectively. The
models were trained on one A100 GPU.

5. Results and discussion

We present the effectiveness of our method through several
training and testing scenarios. The first and last subsections
use VoxCeleb2 as the training data and evaluate the model in
various settings, including other out-of-domain datasets. The
second part uses Thai Central, which contains more uniform
data compared to VoxCeleb2.

5.1. VoxCeleb and out-of-domain evaluation

The results of the model trained using VoxCeleb2 data are sum-
marized in Table 1. Popular baselines such as ECAPA-TDNN
and SE-ResNet34 are included. Another baseline is RFN (in-
put), which is a fwSE-ResNet34 model with RFN applied only
to the input instead of a mean normalization. This helps im-
prove the performance on out-of-domain data as claimed in
[8]. However, it lowers the performance on the easiest test set
(VoxCeleb1-O). Unexpectedly, there is a large drop in perfor-
mance when evaluating on the Thai datasets. However, the
largest performance gap is on CREMA-D because the utter-
ances are much shorter.

The rows with “+” prefixes are fwSE-ResNet34 models
with different instance-level normalization techniques. FN+LN
refers to the relaxed version of FN and LN with λ = 0.5 [8]
while FN+TN refers to those of FN and TN with λ = 0.7. As
described in Section 3.3, the normalization in the attention pool-
ing layer is always fixed to TN. Using any normalization layer
across the entire network yields a noticeable gain over the base-
lines. Using just TN can improve the performance over strong
baselines that use BN or FN proposed recently. On VoxCeleb1-
O, TN has a relative improvement of 39.2% and 28.2% in terms
of DCF over BN and FN, respectively. This is considered a large
improvement over a strong baseline. Moreover, the best per-
forming instance-based normalization is FN+TN, which con-
sistently outperforms on most datasets. Combining multiple
normalization techniques provides better results than those with
single normalization. Note that FN+LN is essentially RFN,
highlighting the impact of applying the normalization through-
out the network.
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5.2. Thai-Central

Table 2 shows the results of the models trained on Thai-Central.
The results show that TN and FN+TN yield are the best per-
forming models. FN+TN performs better on Thai-Central,
while TN performs better on THAI-SER. Further investiga-
tion revealed that FN+TN performs better on utterances with
recording artifacts such as bad microphones or encoding. Thai-
Central is collected via crowdsourcing which has some low-
quality recordings. Note that the results on THAI-SER are
worse than those in Table 1. Since Thai-Central is read speech,
the model lacks the robustness to generalize well to emotional
recordings in THAI-SER.

Table 2: Results for models trained on Thai-Central.

Thai-Central THAI-SER
EER DCF EER DCF

ECAPA TDNN 2.18 0.168 15.46 0.811
SE-ResNet34 2.17 0.158 15.38 0.789

fwSE-ResNet34 2.05 0.165 15.21 0.806
RFN (input) [8] 2.31 0.179 17.62 0.859

+ TN (Ours) 1.91 0.149 14.06 0.787
+ FN + LN 1.94 0.147 14.88 0.788

+ FN + TN (Ours) 1.83 0.144 14.49 0.790

5.3. Analysis of the effect on the embeddings

We have conducted experiments using the embedding from var-
ious layers to perform speaker verification. Figure 2 shows
that the model with Relaxed Temporal-Frequency Normaliza-
tion is superior to that of Batch Normalization in terms of per-
formance. Moreover, the relative improvement increases as
embeddings from higher layers are used. This indicates that
FN+TN is better than BN at extracting speaker information.

To quantify the amount of non-speaker related information
still presented in the embeddings, we also trained an emotion
classifier using logistic regression with the learned speaker em-
beddings as input features. We split the CREMA-D and the
THAI-SER data into training and test sets and created models
for each dataset. Classifiers with features from the BN model
got accuracy values of 59.61% and 57.57% on THAI-SER and
CREMA-D, respectively. On the other hand, their FN+TN
counterparts got lower accuracy scores of 54.93% and 55.47%.
Thus, the embeddings from BN seem to have more emotional
information present. These results corroborate the usefulness
of instance-based normalization over Batch Normalization for
speaker verification.

6. Ablation Studies
6.1. Attentive Statistics Pooling layer

The effect of replacing the BN in the attentive statistics pooling
layer with TN on the model trained on VoxCeleb2 is shown in
Table 3. We set λ = 0.5 for this experiment. In the VoxCeleb1-
E, VoxCeleb1-H, Thai-Central, and CREMA-D, TN outper-
forms BN. However, the results of both models are comparable
in VoxCeleb1-O and THAI-SER. Thus, using TN in the pooling
layer may improve the robustness in hard conditions.

6.2. Effect of the λ parameter

Figure 3 shows the effect of different λ values on the perfor-
mance of different datasets. λ = 0 means that we only use FN.
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Figure 2: Evaluation of feature maps from different stages of
fwSE-ResNet34 in terms of EER on VoxCeleb1-O. The red line
illustrates the relative performance gain of FN+TN over BN.

Table 3: The effect of using TN in the attention pooling layer of
fwSE-ResNet34+FN+TN.

BN 1d TN
EER DCF EER DCF

VoxCeleb1-O 0.85 0.103 0.89 0.090
VoxCeleb1-E 1.10 0.124 1.08 0.122
VoxCeleb1-H 2.10 0.208 2.01 0.201
Thai-Central 7.71 0.463 6.98 0.408
THAI-SER 5.71 0.414 5.60 0.429
CREMA-D 12.19 0.794 12.17 0.775

We report performance values relative to λ = 0. The results
show that tuning only the λ hyperparameter can improve the
performance up to 17.34% in terms of EER. Note that we chose
λ = 0.7 to treat VoxCeleb1-O as the dev set for tuning.
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Figure 3: Effect of the λ parameter in Relaxed Temporal-
Frequency Normalization.

7. Conclusion
This paper investigates the usage of the instance-based normal-
ization layer for the speaker verification task. We introduce
Temporal Normalization, Relaxed Temporal-Frequency Nor-
malization, and a strategy to incorporate them in any ResNet-
based architectures. The results of the experiments showed that
our proposed methods improved the performance and provided
additional robustness in mismatch conditions such as language
and emotion.
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