
Sp1NY: A Quick and Flexible Speech visualisation Tool in Python

Sébastien Le Maguer, Mark Anderson, Naomi Harte

Sigmedia Lab, School of Engineering, Trinity College Dublin, Ireland
{lemagues, andersm3, nharte}@tcd.ie

Abstract

In this submission, we describe Sp1NY, a Python toolkit to vi-
sualise and annotate speech. Inspired by Praat and music no-
tation software, we designed Sp1NY to be accessible and flex-
ible. By introducing a control panel, Sp1NY provides a quick
way for the user to interact with it. By focusing Sp1NY only
on visualisation and annotation and, by reducing the core of the
software to a minimum, we ensure that the software will remain
stable. Finally, Sp1NY integrates a plugin mechanism which
allows researchers to adapt the tool to their needs.
Index Terms: visualisation, Annotation, Speech, Python, Qt,
PyQtGraph

1. Introduction
In the era of data analysis and machine learning, visualisation
and annotation of data is critical, as are the tools to do so. Not
only does the training of good models require well-curated data,
but a good visualisation and annotation tool allows researchers
to analyse the output of these models. Such a tool is even more
essential for speech researchers who manipulate a complex and
information-rich signal.

Over the years, multiple tools have been proposed for the
visualisation and annotation of speech signals. The most no-
table tools in use are WaveSurfer [1] and Praat [2]. Both tools
exhibit certain strengths. WaveSurfer’s strength is its simplic-
ity: the user can visualise and annotate an audio signal with
ease, using only a few clicks. Meanwhile Praat is a full annota-
tion and speech processing environment, providing access to an
wide array of self-contained features such as speech synthesis
and a scripting language.

While these tools are the cornerstones of speech annota-
tion, their development began over 20 years ago. Since then,
the fields of User Interface (UI) design, speech technology and
software design have evolved significantly. As a result, it is now
time to propose a new take on a speech annotation and visuali-
sation tool. In this paper, we present the result of this new take:
Speech vIsualization and aNnotation in pYthon (Sp1NY).

Sp1NY is open-source software1, developed with the fol-
lowing constraints. First, Sp1NY has been designed to focus on
speech visualisation and annotation only. This constraint is key
to obtaining a simple but efficient tool and avoids introducing
unnecessary layers of complexity. Second, the core of Sp1NY
has been designed to be as minimal as possible by introducing
the usage of visualisation plugins. This ensures that the core
of Sp1NY is stable and allows users to adapt Sp1NY for their
needs. Finally, the Graphic User Interface (GUI) of Sp1NY has

1https://github.com/sigmedia/sp1ny

been designed to facilitate the onboarding process and to pro-
vide quick access to the annotation and visualisation controls.

We have divided the presentation of Sp1NY into two sec-
tions. Section 2 presents the GUI and the design choices which
lead to it. Section 3 presents our software design choices and
how Sp1NY can be extended to fit the user’s needs.

2. User Interface Design
The design of Sp1NY’s GUI has drawn inspiration from both
Praat and music editing software such as MuseScore 4 [3]. A
key strength of Praat is how it handles annotations. From the
perspective of the user, all the relevant information is visible
and modifiable in one place. This allows for straightforward in-
teraction. However, interaction can become cumbersome when
the user wants more refined control over the various aspects of
visualisation or annotation. For example, to control the spectro-
gram rendering, the user has to navigate through different menu
items before reaching the relevant controls. Opposing this, the
design of music notation software relies on left and right panels,
providing quick access to the relevant controls. Music notation
software also provide an audio player toolbar, which gives the
user a straightforward way to control audio playback. Our goal
is to keep the simplicity introduced in Praat to visualise and an-
notate speech while enhancing the accessibility to the control
elements using the panel design scheme from music notation
software. To facilitate the presentation of Sp1NY’s GUI, we
compare it to Praat’s GUI as presented in Figure 1.

Sp1NY comprises two main parts: the visualisation area
and the control area (4). The visualisation area is similar to
Praat (as we can see when comparing Figure 1b to Figure 1a)
and is composed of three areas: the waveform viewer (1), the
annotation viewer (2) and the speech visualisation viewer (3).
Each element of the visualisation part is dockable, this allows
the user to move these elements to suit their needs. For example,
in Figure 1b, the visualisation used is a spectrogram; however,
any visualisation plugin developed for Sp1NY can be used. We
discuss plugins further in Section 3.

The control area is divided into two control panels accessi-
ble by their respective tabs: the speech visualisation panel and
the annotation panel. The visualisation panel allows the user to
select which visualisation plugin they want to use as well as de-
fine the parameters necessary to control that visualisation. For
example, the users can select to visualise the speech using a
spectrogram or a wavelet transform (such as [4]) and then de-
fine window size/stride, frequency limits and amplitude limits.
How plugins are developed is presented in the next section. The
annotation panel2 provides an easy and flexible way to modify

2Due to space constraints, we don’t include a snapshot of the anno-
tation panel

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

2012



(a) Praat (b) Sp1NY

Figure 1: Comparing the GUIs of Praat (a) and Sp1NY (b). The areas of importance of the GUI of Sp1NY are: 1) the waveform, 2) the
annotations, 3) the data visualisation, 4) the control panel and 5) the playback toolbar.

annotations. It is composed of three parts: the annotation file,
the current annotation information and the IPA helpers. The
IPA helpers are similar to those used in Praat, but we have im-
proved the user experience through grouping elements by cat-
egory (i.e. consonants, vowels, diacritics and suprasegmental
elements). We also introduce a tooltip, providing a description
of the relevant element.

We introduce a flexible way of controlling the annotations
using key modifiers. This allows the user to zoom in/out of a
segment quickly or to play the portion of the signal associated
with that segment in one simple click. The type of operation is
defined by the key modifier used.

3. Software Design
Sp1NY is developed in Python. This choice is justified by
two main reasons. First, Python is cross-platform, which al-
lows Sp1NY to be available on Linux, MacOS and Windows.
Second, multiple speech processing toolkits and packages have
been written in Python, enabling developers to extend Sp1NY
to suit their needs easily.

As previously mentioned, we designed Sp1NY with a mini-
mal core which is extended through the use of plugins. Sp1NY’s
core provides the window layout, audio playback, waveform
rendering, annotation management and a plugin loading mech-
anism. Visualisation of a speech representation (e.g. spectro-
gram or wavelet transform) is delegated to the plugins.

A visualisation plugin is a simple Python package dedicated
to instantiating one visualisation paradigm. The plugin package
has to be a subpackage of spiny.plugins. This enables us
to automatically load the plugin if it is in the python path. As
illustrated in Figure 2, a plugin is composed of three classes:
the Extractor, which extracts the representation from the speech
signal (method extract); the View, which renders of the rep-
resentation obtained by the Extractor (method refresh); and
the Controller, which calls the Extractor and provides the pa-
rameters necessary for the representation extraction (method
update, which internally needs to call the methods extract
from the Extractor and refresh from the View).

Both the Controller and the View require visual compo-
nents, allowing the user to interact with them. For visual ren-
dering, Sp1NY relies on two libraries: PyQt and PyQtGraph[5].
PyQt is a set of Python bindings for Qt, which is a standard,
cross-platform GUI library used in software such as MuseScore

11
1 1

11

Controller

view: View
extractor: Extractor

update()

Extractor

wav: Array

extract(...)

View

extractor: Extractor

refresh()

Figure 2: Class diagram describing the architecture of a Sp1NY
plugin.

4. PyQtGraph is a library built on top of PyQt which pro-
vides a fast way to plot and visualise data. As a result, Sp1NY
leverages PyQtGraph to render the data visualisation, the an-
notations and the waveform and uses PyQt to design any other
GUI components. Considering a plugin, the View is developed
using PyQtGraph (more precisely, the View is a subclass of
pg.PlotWidget), while the GUI of the Controller is devel-
oped using PyQt. An advantage of using PyQt is that it provides
an easy way to design elements of the GUI using QtDesigner
and Qml. This is especially convenient as it allows the plugin
developer to prototype the control panel quickly.

4. References
[1] K. Sjölander and J. Beskow, “Wavesurfer - an open source speech

tool,” in Proc. 6th International Conference on Spoken Language
Processing (ICSLP 2000), 2000, pp. vol. 4, 464–467.

[2] P. Boersma and D. Weenink, “Praat, a system for doing phonet-
ics by computer, version 3.4,” Institute of Phonetic sciences of the
University of Amsterdam, Report, vol. 132, p. 182, 1996.

[3] “Musescore 4,” https://musescore.org/en/4.0, Dec. 2022.

[4] A. Suni, J. Šimko, D. Aalto, and M. Vainio, “Hierarchical represen-
tation and estimation of prosody using continuous wavelet trans-
form,” Computer Speech & Language, vol. 45, pp. 123–136, 2017.

[5] “Pyqtgraph - scientific graphics and gui library for python,” https:
//www.pyqtgraph.org/.

[6] H. N. Bicer, P. Gotz, C. Tuna, and E. A. P. Habets,
“Explainable acoustic scene classification: Making decisions
audible,” in International Workshop on Acoustic Signal En-
hancement (IWAENC). IEEE, Sep 2022. [Online]. Available:
http://dx.doi.org/10.1109/iwaenc53105.2022.9914699

2013


