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Abstract
This paper is a step forward in our effort to make vast oral
history archives more accessible to the public and researchers
by breaking down the decoding barriers between the knowl-
edge encoded in the spoken testimonies and users who want
to search for the information of their interest. We present
new Transformer-based monolingual models suitable for speech
recognition of oral history archives in English, German, and
Czech. Our experiments show that although the all-purpose
speech recognition systems have recently made tremendous
progress, the transcription of oral history archives is still a chal-
lenging task for them; our tailored models significantly outper-
formed larger public multilingual models and scored new state-
of-the-art results on all tested datasets. Due to the 2-phase fine-
tuning process, our models are robust and can be used for oral
history archives of various domains. We publicly release our
models within a public speech recognition service.
Index Terms: speech recognition, oral history archives

1. Introduction
Oral history archives usually store vast and extremely valuable
knowledge from our history recorded within audiovisual inter-
views. The authentic memories of individual speakers are thus
encoded in the spoken utterances, where they are hard to reach
by users interested in particular pieces of memories but not hav-
ing time to listen to the whole interviews. Thus, it is very im-
portant to reliably transcribe the speech into text in order to
allow efficient searching in the archives. Due to the extreme
sizes of oral history archives, such as the one examined in this
paper, manual transcription of interviews would be unfeasible.
So in the last two decades, researchers around the world have
been developing automatic speech recognition (ASR) systems
and advanced search engines on top of oral history archives to
make the content more accessible.

Several years ago, a new era of the artificial intelligence
field started by introducing the Transformer architecture [1].
Three years ago, Transformer-based models established a new
paradigm also in the speech recognition domain – the Wav2Vec
2.0 model [2]. Since then, we are witnessing the rapid growth
of the family of Wav2Vec-like models along with the necessary
rapid growth of large-scale audio datasets for self-supervised
pre-training of these models.

In this paper, we are working with data from the Visual His-
tory Archive (VHA), which is an audiovisual archive originally
collected in the 1990s to preserve the memories of Holocaust
survivors. Today, these interviews are stored at the Shoah Foun-
dation Institute (SFI) at the University of Southern California
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(USC), along with other interviews with witnesses to the his-
tory of the entire 20th century (more than 54k interviews). The
Holocaust part of the archive contains testimonies in 32 lan-
guages of the personal memories of people who survived the
World War II Holocaust. Most of them are in English (approx-
imately half of the entire archive). More than 570 testimonies
are in Czech (almost 1,000 hours of video), and almost 1,000
testimonies are in German (more than 2,000 hours of video). In-
terviews (in all languages) collected in the archive contain nat-
ural speech, full of disfluencies, emotional excitements, heavy
accents, and are often influenced by the high age of speakers
(problems with keeping ideas). The average age of all speak-
ers at the time of recording was about 75 years. We denote this
archive as SFI-VHA in this paper.

We are contributing to the family of Wav2Vec models with
new ASR systems suitable not just for SFI-VHA archives but
also for other oral history archives in English, German, and
Czech. We are releasing the speech recognition systems as a
public service for the research community1.

Our ultimate goal in this field is to develop a speech recog-
nizer for the oral history archives to a satisfactory level where
users will be satisfied with the quality of the transcriptions
and, when this is done, to fully concentrate on higher levels of
search engines incorporating AI models in order to offer highly-
relevant content to user’s queries.

2. Related work
The original MALACH (Multilingual Access to Large Spoken
Archives) project took place between 2001 and 2006. Its goal
was to provide better access to the SFI-VHA archive via ASR
and IR techniques. The WER of the ASR systems developed
within the project reached 39.40% for English [3] and 38.57%
for Czech [4] by the end of the project in 2006. Even after the
project finish, the efficiency of the ASR systems was being con-
tinuously improved using new approaches, so that in 2011 the
WER of 27.11% was achieved for Czech recordings [5]. New
training methods based on DNN brought further improvement
of WER (21.70% for English [6] and 19.11% for Czech [7]).
The best WERs without using end-to-end approaches were pub-
lished in 2021 [8] and reached 17.85% for English and 14.65%
for Czech.

After the introduction of end-to-end Transformer-based au-
dio models, [9] reported a significant improvement for the
Czech dataset (WER=10.48%). For English, we are not aware
of any reported improvements since then. For German, we
didn’t find any related work reporting ASR results in the lit-
erature, so this paper is the first one to report ASR results for
this dataset.

1https://uwebasr.zcu.cz
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3. Datasets
For each target language, we converted available transcribed
videos from the SFI-VHA archive into a unified audio format
(16kHz mono). We sliced long train and development record-
ings into segments not exceeding 30s, which is a reasonable
limit of input examples during training due to GPU memory
limits. To allow the trained ASR models to learn long-distance
dependencies (up to 30s), we kept together as much context as
possible in each segment while favoring segments ending with
a full stop and pause. We cleaned all transcripts by removing
non-speech events and punctuation and mapping texts into low-
ercase. The data statistics are shown in Tab. 1.

Table 1: Fine-tuning datasets. We show the number of hours,
words in transcripts (in thousands), and the average length of
train/dev/test segments of audio (in seconds).

English German Czech
train dev test train dev test train dev test

# hours 245.7 9.2 4.3 1 803 33.0 80.8 87.2 19.2 9.0
# words 1 934 73 36 13 428 252 575 615 137 63
avg-len 27.0 25.2 5.2 20.3 20.2 1 692 24.1 24.1 10.6

3.1. English and Czech datasets

For English and Czech, we used datasets released under the
Linguistic Data Consortium (LDC) – English [10] and Czech
[11]. We adopted the same train-dev-test splits as in [8] and
segmented train and development parts using time labels from
the annotations into segments complying with the input limits
of Transformers. The test parts for these two languages were
already cleaned and contained only selected shorter segments
(usually covering the maximum length of a single speaker’s ut-
terance without overlaps). As we found in [9], the Czech dataset
contains a mix of formal and colloquial Czech in transcripts,
causing a mismatch between train and test data, so we converted
all Czech training transcripts into formal Czech to keep our re-
sults comparable.

3.2. German dataset

In order to make the German video interviews of the SFI-VHA
more usable for research and teaching at universities, but also
for educational work in schools, Freie Universität Berlin tran-
scribed approximately 900 German-language interviews with
a total duration of almost 2,000 hours.2 The transcription of
testimonies was part of the project “Witnesses to the Shoah”
[12] funded by the German Lottery Foundation Berlin (Stiftung
Deutsche Klassenlotterie Berlin) and took place between 2008
and 2013. The transcripts were made according to a set of
rules created especially for the project. Software developed
specifically for the transcription project automatically provided
the segmentation of the transcripts according to the one-minute
segmentation of the video interviews in The Visual History
Archive. The transcripts were prepared by a total of over 100
freelance transcribers. The quality management then checked
the correct spelling and punctuation, compliance with transcrip-
tion guidelines, and the consistency of the text and video.

2Transcripts are publicly available at https://transcripts.
vha.fu-berlin.de.

Since there was no train-dev-test split in the data, we split
it randomly to keep records from 4% of all speakers in the test
part and 2% in the development part. Because the transcrip-
tions contained 1-minute segments without word-level time la-
bels and training of Wav2Vec models requires a 30s limit of
input data, we re-segmented the train and development data us-
ing force alignment. First, we fine-tuned a German Wav2vec
2.0 model using the CommonVoice dataset [13] to get a base
German ASR system. For each recording, we used this ASR
system together with a language model trained only from its
reference transcript to get the word-level time labels while forc-
ing the ASR system to decode n-grams from the reference. We
aligned decoded words with the reference text and adopted the
time labels for reference words wherever the transcriptions were
in sync. Finally, we segmented long recordings on pauses while
favoring long segments (but not exceeding 30s) ending with a
full stop. In the test part, we left the long recordings untouched
to avoid segmentation errors affecting the quality of the test
data. Hence, recordings in the German test dataset are much
longer and less clean than test data from other languages.

4. Pre-trained models

Where available, we used public pre-trained models. However,
due to a lack of high-quality monolingual pre-trained models,
we also pre-trained one new model (German base) from scratch.
For the newly pre-trained model, we used Wav2Vec 2.0 archi-
tecture [2] (we will use the shorter abbreviation W2V2 in our
experiments and the following text). We adopted the same hy-
perparameter setting as in the paper, i.e., we trained the base
model (12 Transformer blocks, model dimension 768, 8 atten-
tion heads, total 95 million parameters) for 400 thousand steps
with a batch size of about 1.6 hours. We used Fairseq tool3

for both pre-training and fine-tuning of models.

4.1. W2V2-base models

For English and Czech, we used already published pre-trained
base-sized models – wav2vec2-base4 [2] for English, and
ClTRUS5 [14] for Czech.

We didn’t find any suitable pre-trained monolingual model
for German, so we pre-trained a new base-sized model from
scratch. Since W2V2 models are known to scale well with the
size of pre-training data, we tried to gather as much public un-
labeled speech data as possible. We collected over 65 thousand
hours of German speech from various sources. The collection
includes recordings from the German portion of the VoxPopuli
dataset [15] (28k hours), a mix of self-crawled publicly avail-
able German podcasts (25k hours), audiobooks from the Lib-
riVox project6 (4.2k hours), recordings from several oral history
archives (4k hours), selected speech data from BAS CLARIN
Repository [16] (2.3k hours), German portion of CommonVoice
corpus 11.0 [13] (1.2k hours), and a smaller amount of data
from several other domains. The pre-training took about two
weeks on a machine with four NVIDIA A100 GPUs.

3https://github.com/pytorch/fairseq
4https://dl.fbaipublicfiles.com/fairseq/

wav2vec/wav2vec_small.pt
5https://huggingface.co/fav-kky/

wav2vec2-base-cs-80k-ClTRUS
6https://librivox.org
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4.2. Multilingual models

To compare W2V2 models with other public models, we se-
lected W2V2-XLS-R-300M [17], a popular model pre-trained
on 128 languages and approximately 436 thousand hours of un-
labeled speech data. We experimented with the 300M variant,
which has more than 300 million parameters, i.e., more than 3×
more than the W2V2-base model.

Finally, we compared W2V2 models with Whisper [18],
another popular model trained on 99 languages from 680,000
hours of multilingual and multitask labeled data. This model
differs from W2V2 models in two main aspects: (1) it has an
encoder-decoder architecture, where the decoder serves as an
audio-conditioned language model, (2) the input is not raw au-
dio signal, but Mel spectrogram. We experimented with two
sizes: Whisper-small (12+12 Transformer layers, model
dimension 768, 12 attention heads, total 244 million parame-
ters) and Whisper-large (32+32 Transformer layers, model
dimension 1280, 20 attention heads, total 1.55 billion param-
eters). Moreover, we experimented with the language identi-
fication ability of the model. We compared the decoding re-
sults when we input the correct language along each recording
(lang-spec) and when the model identifies the language au-
tomatically from the input signal (lang-auto).

5. Fine-tuned models
We prepared training and development ASR data for fine-tuning
as described in Sec. 3. If not stated otherwise, we used the same
hyperparameters as in [2] and optimized models with the Con-
nectionist Temporal Classification (CTC) loss [19] on labeled
data. We also used a 2-phase fine-tuning setup as recommended
in [14] to scale the fine-tuning up (see Fig. 1). Specifically, we
were experimenting with three fine-tuning settings.

In-domain fine-tuning (FTID) is a standard single-phase
fine-tuning on labeled data from only one target language. We
fine-tuned the models for 80k updates with a batch size of 27
minutes. We used the learning rate 2 × 10−5 for English and
Czech datasets, and 8 × 10−5 for the larger German dataset,
as these learning rates gave us consistently the best results on
development datasets across all models.

General-domain fine-tuning (FTGD) is a single-phase
fine-tuning on all labeled ASR data we were able to collect for
the target language. The aim is to train a universal domain-
independent ASR model for each language which can be used
as a starting checkpoint for the second fine-tuning phase or as a
general ASR model for unknown domains. Datasets for FTGD

vary between languages in both diversity and amount. For En-
glish, we used 12.5 thousand hours of data from the Common-
Voice, SFI-VHA, and GigaSpeech [20]. For German, we used a
mix of CommonVoice, VoxPopuli, SFI-VHA, LibriSpeech [21],
and BAS Repositories [16], which was together over 6 thousand
hours of data. For Czech, we used a mix of the CommonVoice,
VoxPopuli, SFI-VHA, radio and TV shows, and telephone data,
summing up to almost 6 thousand hours of transcribed speech.
Since these datasets are large, we increased the number of fine-
tuning updates to 160k and the batch size by a factor of 4 (i.e.
108 minutes).

2-phase fine-tuning (FTGD + FTID) is a sequence of two
previously described fine-tunings of the model, i.e., the FTGD

followed by the FTID as depicted in Fig. 1. Models trained with
this 2-phase fine-tuning are robust speech recognizers that can
profit from large-scale out-of-domain ASR data while prefer-
ring the in-domain predictions due to the second phase [14].

All language-specific 
speech data

Labeled 
data

In-domain
labeled

data

>Pre-training
Phase 2:

in-domian
fine-tuning

Phase 1:
general-domian

fine-tuning

Wav2Vec 2.0
(random init)

Wav2Vec 2.0
(ASR)> > >

Figure 1: The scheme of 2-phase fine-tuning.

6. Language models
When evaluating fine-tuned models, we experimented with two
decoding strategies: (1) CTC grapheme-based lexicon-free de-
coder and (2) CTC beam search decoder with a language model
(LM). For strategy (2), we used pyctcdecode7 tool and se-
lected the LM of the correct target language when evaluating
the models. The decoding with LM usually improves speech
recognition performance by bringing useful language informa-
tion into the decoding process while penalizing improbable out-
puts in the target language.

For each language, we trained large-scale 4-gram LM us-
ing KenLM [22] toolkit. We used web pages from the Common
Crawl project8 as a text data source. For each language, we col-
lected more than 100GB of cleaned and deduplicated text. To
keep the LMs of practical sizes, we pruned all unigrams with
counts lower than ten and higher-order n-grams with counts
lower than 100. We trained all LMs in lowercase as all fine-
tuning transcripts were converted into lowercase. The sizes of
LM vocabulary were 3.7 million words (English), 9.9 million
words (German), and 4.8 million words (Czech).

Decoding with LMs trained from the Common Crawl
project has a great advantage for oral history archives. These
large-scale LMs could also cover very rare words (e.g., names
of small villages or publicly unknown people) mentioned only
several times somewhere on the Internet. Correct recognition
of these content-bearing rare words is critical for users when
searching for some very specific piece of information.

7. Pipeline of processing the archives
We are using fine-tuned modes as a core part of the archive pro-
cessing pipeline. First, we run the ASR inference on overlap-
ping signal chunks to give the model sufficient context for each
chunk center. Then, we put together the output chunk-center
logits of the whole sequence and apply CTC decoding with
the language model. Since our models generate only lower-
case characters without punctuation, we then process the output
with a text Transformer fine-tuned to restore casing and punctu-
ation marks. Throughout the whole pipeline, we keep the time
alignment of words with the audio to finally generate subtitles
of optimal duration and amount of text that are easy to read for
users watching the video.

8. Experiments
In our experiments, we pre-trained and fine-tuned all described
models and evaluated them on the test part of a relevant lan-
guage dataset. The test parts were held out during the whole
fine-tuning process and had no speaker overlaps with train or
development parts. We compared models in terms of word er-

7https://github.com/kensho-technologies/
pyctcdecode

8https://commoncrawl.org
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ror rate (WER). Our results are tabulated in Tab. 2. It is worth
noting that test parts have different qualities for each language;
thus, WER values cannot be compared across languages. E.g.,
Czech models have lower WER than German models of the
same size, but that does not mean they are better because the
Czech test dataset was pre-processed to be very clean, whereas
the German test part contains the original signal with all speech
overlaps, long pauses with background noise, acoustic non-
speech events, etc. We can only compare models evaluated
on the same test dataset (i.e., results from the same column in
Tab. 2).

Table 2: Evaluation results in terms of WER [%].

English German Czech

CNN-TDNN LF-MMI [8] 17.85 – 14.65

W2V2-base + FTID 16.91 18.61 11.52 [9]
+ LM 14.70 17.32 9.32

W2V2-base + FTGD 23.68 18.56 19.27
+ LM 21.15 18.71 14.07

W2V2-base + FTGD + FTID 14.21 17.77 9.97
+ LM 12.88 17.08 8.43

W2V2-XLS-R-300M + FTID 16.69 24.49 13.36
+ LM 14.31 22.52 9.50

Whisper-small (lang-auto) 28.34 41.81 41.00
Whisper-small (lang-spec) 20.88 25.81 38.17
Whisper-large (lang-auto) 23.79 35.13 28.15
Whisper-large (lang-spec) 17.34 22.99 25.95

For each fine-tuned W2V2 model, we report results with
two decoding strategies: (1) CTC grapheme-based lexicon-free
decoding, and (2) decoding with CTC beam search decoder
with a language model (denoted as the “+ LM” rows in the
Tab. 2) – see Sec. 6 for details.

To see how big a step forward ASR systems have made
when switching the paradigm to Transformer-based architec-
ture, we also add two years old results scored by the state-of-
the-art model of that time [8] for comparison. We also evaluated
fine-tuned XLS-R and Whisper to compare W2V2-base models
with other relevant models. The Whisper models are already
fine-tuned by authors, so we used them as they were.

However, when comparing the models in Tab. 2, it is im-
portant to keep in mind the sizes of individual models and fairly
compare only models of similar sizes. The W2V2 models of
the base size have 95M parameters, Whisper-small is more than
2× the larger (244M parameters), XLS-R model is more than
3× larger (315M parameters) and Whisper-large is about 16×
as large as the W2V2-base models.

9. Discussion
Based on our experimental results in Tab. 2, we confirm that
including LM from Common Crawl into the CTC decoder im-
proves the ASR results (with only one exception for the Ger-
man W2V2-base + FTGD model). We can observe larger im-
provements for models fine-tuned only in a single phase than
for models trained in the 2-phase fine-tuning, which means that
with longer fine-tuning, the W2V2 models are learning also the
in-domain n-gram frequencies from the training transcripts.

For the Czech dataset, we replicated the results of in-
domain fine-tuning of the W2V2-base model published in [9]
and improved it by a significant margin by adding the large-

scale LM (WER decreased from 11.52% to 9.32%) and applied
the 2-phase fine-tuning (further improvement to WER=8.43%),
which is – to our best knowledge – a new state-of-the-art result
on this dataset.

We took a closer look at the German model as it scored
higher WERs and behaved somehow differently from the En-
glish and Czech models. We found out that the main portion of
errors consists of incorrect transcriptions of declined German
articles, which sound very alike (e.g., “den” vs. “dem”, “eine”
vs. “einer” vs. “einem” vs. “einen”), especially when spoken
by an old person in a fast, heavily accented, and emotionally
stressed utterance. For these words, we observed a large num-
ber of disagreements between annotations and predictions. This
phenomenon, together with the test data quality, is the main rea-
son for the higher WER values of the German model.

Our results also confirmed the positive impact of 2-phase
fine-tuning when compared with in-domain fine-tuning. More-
over, we can observe that when the in-domain dataset is large
enough (the German dataset), the positive impact of the 2-phase
fine-tuning is rather minor (WER decreased from 17.32% to
17.08%). We hypothesize that as the model has a sufficient
amount of in-domain data available, it does not profit so much
from out-of-domain datasets anymore.

From the comparison of W2V2 models with the popular
multilingual models (XLS-R and Whisper), we can clearly see
the superiority of having high-quality monolingual models pre-
trained exclusively for one target language over multi-lingual
models sharing the weights for many languages at once. Al-
though both XLS-R and Whisper models are much larger and
were (pre-)trained from many times more speech data than the
monolingual W2V2-base models, the results from W2V2-base
FTID models are very close (English and Czech) or even signif-
icantly better (German) than the results from the XLS-R model.

The results from the Whisper models are often far from the
results of other models. We hypothesize that it is because the
oral history archives are out of domains the model was trained
on, and thus the model is at a disadvantage when compared with
other models that were fine-tuned directly on the oral history
archives domain before evaluation. An interesting result is that
it is always beneficial to specify the correct language of the in-
put speech, otherwise, the Whisper models often identify the
language incorrectly and the whole transcript of the recording
is then unintelligible causing many ASR errors.

10. Conclusions
In this paper, we presented new high-quality monolingual
Transformer-based models suitable for speech recognition of
oral history archives in English, German, and Czech. These
models significantly outperform existing multilingual models
while scoring new state-of-the-art results on all tested datasets.
Thanks to the 2-phase fine-tuning, the proposed models are ro-
bust speech recognizers that can be used directly for oral his-
tory archives of various domains. We are providing fine-tuned
speech recognizers for the research community and thus hope-
fully contributing to making the extremely valuable knowledge
hidden in the vast oral history archives more accessible to the
public and researchers.
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