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Abstract
An appealing approach for speech emotion recognition (SER)
is to pre-train a large speech representation model, such as
Wav2Vec2.0 or HuBERT. However, this large model should
be adapted to different environments when deployed in real-
world applications. This approach demands additional train-
ing time and stored parameters for each target environment.
This paper proposes a computation and memory-efficient adap-
tation method. The approach trains skip connection adapters
that generate environmental representations from the convolu-
tional encoder, and denoise the self-supervised speech represen-
tations. Our experiments with the clean and contaminated ver-
sions of the MSP-Podcast corpus show that our adapter-based
approach not only improves the performance of the original
fine-tuned SER model, but also reduces the computation and
memory requirements. For each environment, the approach re-
quires 59.16% less adaptation time and only 0.98% of the pa-
rameters of the transformer encoder.
Index Terms: Speech emotion recognition in noisy environ-
ments, environment adaptation.

1. Introduction
The use of speech emotion recognition (SER) can serve as an
important tool for real-world applications in different domains,
including healthcare, marketing, education, and entertainment.
Recent studies have shown that fine-tuning a large pre-trained
transformer model, such as Wav2Vec2.0 [1] and HuBERT [2],
performs well in SER tasks [3–5]. However, when deployed in a
real-world scenario, a large transformer model must be adapted
to noisy conditions to compensate for the environmental differ-
ence between the source and target domain.

Several studies have presented solutions to increase the
robustness of SER models against noisy environments [6–8].
Most of these studies have not leveraged popular pre-trained
self-supervised feature representations. Recently, some studies
have started to leverage a large transformer encoder to be robust
against noisy environments in speech tasks [9–11]. However,
these methods still require a large amount of pre-training data.
The adaptation methods also take time to update the transformer
encoder, which has to be separately implemented for each target
environment. In addition, a large number of parameters must be
stored to deal with each environment. These limitations are cru-
cial when using a large transformer model for SER deployed in
a real-world application, where adapting to multiple noisy en-
vironments is essential. Some studies have explored minimiz-
ing the parameter requirements for adapting a large transformer
architecture to multiple domains or tasks [12–14]. Such ap-
proaches can reduce the space requirements for domain-specific
parameters in each adaptation condition. However, they still re-

quire large computation resources to adapt the models, since
they need back-propagation through the transformer encoder,
which includes multi-head self-attention (MHSA) layers.

This paper proposes environment-agnostic and
environment-specific skip connection adapters for adjust-
ing a large self-supervised speech representation model to
multiple noisy environments. The environment-agnostic
adapter learns the general characteristics of all non-speech
background noises, while the environment-specific adapter
learns the granular characteristics of the background noise
in the target environment. Our approach avoids the back-
propagation of gradients through the transformer encoder, since
it updates both adapters without modifying the transformer
encoder and the downstream head. Our method decreases the
space requirements for an SER model to deal with each noisy
environment by only storing the skip connection adapters.

We demonstrate the computation and memory efficiency
of our proposed method, while improving the system’s perfor-
mance. We evaluate the skip connection adapters on the MSP-
Podcast corpus and contaminated versions of its recordings with
various noise sounds. Our experiments show that using skip
connection adapters leads to 16.2% (arousal), 12.2% (domi-
nance), and 9.46% (valence) performance improvements from
the original model in the 0dB condition. Compared to adapting
a transformer encoder per environment, our solution decreases
the adaptation time by 59.16%, while only using the equivalent
of 0.98% of the transformer encoder parameters.

2. Background
Various self-supervised speech representations have been pro-
posed [15–17]. This work focuses on the Wav2Vec2.0 architec-
ture, which performs well in SER and other speech-processing
tasks [1]. While many studies have considered solutions for
SER tasks in noisy environments [6–8, 11, 18–20], the focus of
this section is on applications of Wav2Vec2.0 in SER tasks.

2.1. Wav2Vec2.0 Architecture and Pre-training Procedure
The Wav2Vec2.0 model leverages the raw waveforms as its in-
put to generate frame-level contextual representations through
a convolutional feature encoder and a transformer encoder. The
convolutional feature encoder uses a convolutional neural net-
work (CNN) to transform the raw waveform into latent speech
representations. Such representations are fed into the trans-
former encoder, including MHSA layers [21] to generate frame-
level contextual representations.

When pre-training the Wav2Vec2.0 model, some of the
frames in the latent speech representations are masked and fed
into the transformer encoder. The model is trained to minimize
the contrastive loss, where the query is the contextual represen-
tation of the masked frame, its positive sample is the quantized
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Figure 1: Our proposed environment adaptation method using
skip connection adapters.

latent representation of the masked frame, and its negatives are
the quantized latent representations of the other frames. This
pre-training objective does not require any downstream labels,
enabling the utilization of a large amount of unlabeled speech
data regardless of the downstream tasks.

2.2. Fine-tuning Wav2Vec2.0 to SER tasks

Although Wav2Vec2.0 was originally designed for automatic
speech recognition (ASR) tasks, it also performs well in
utterance-level SER tasks [3–5]. Unlike ASR, which requires a
frame-level prediction, a common formulation for an SER task
uses an average time pooling of the frame-level contextual rep-
resentations to generate an utterance-level prediction. Such av-
eraged representation is fed to the downstream head to predict
categorical or dimensional emotional labels. Wang et al. [3]
showed that only fine-tuning a transformer encoder with the cat-
egorical SER task yields better performance than freezing the
Wav2Vec2.0 model or fine-tuning the whole model, including
the convolutional feature encoder. This trend was also observed
in dimensional SER tasks [5]. Wagner et al. [5] also verified
that fine-tuning from the pre-trained parameters performs bet-
ter than fine-tuning from randomly initialized parameters, even
with the same architecture. All these studies indicate that both
the pre-training and fine-tuning stages are essential for perfor-
mance improvement when using a large pre-trained transformer
model for the SER task.

3. Proposed Approach
The Wav2Vec2.0 model requires much time to fine-tune the
large transformer encoder and memory spaces to store the pa-
rameters for each fine-tuned condition, which is problematic if
the model needs to be adapted for multiple environments. To
solve this issue, we aim to develop a computation- and memory-
efficient adaptation scheme using Wav2Vec2.0 for SER tasks
under multiple noisy conditions. Our main objective is to avoid
the gradient back-propagation of the transformer encoder, T ,
which requires much time during adaptation and large memory
space to store its parameters. Our solution should also improve
the SER performance in multiple noisy conditions.

Figure 1 shows our proposed approach. We start from a
Wav2Vec2.0 model fine-tuned with the SER task under a clean
speech condition. After fine-tuning, we freeze all the fine-tuned
parameters and attach the skip connection adapters, using the
output of the convolutional feature encoder (E) as the input for

these modules. The skip connection adapters with environment-
agnostic and environment-specific modules transform these la-
tent speech representations into the target environmental rep-
resentations, as illustrated in Figure 1. The objective of the
skip connection adapters is to denoise the speech representation
of the transformer encoder to maximize the SER performance.
This goal is achieved by subtracting the environmental repre-
sentation generated by the skip connection adapters from the
speech representation generated by the transformer encoder.

We may know the testing environments of each testing
speech sample for real-world applications by exploiting do-
main knowledge or global positioning system (GPS) informa-
tion. To utilize such prior knowledge, we use two skip con-
nection adapters: the environment-agnostic adapter, Aagn.,
which is updated using all types of background noises, and the
environment-specific adapter, Aspe., which is updated only us-
ing a specific type of background noise (e.g., vehicle noise). Us-
ing these two different adapters allows the environmental rep-
resentations to learn the general characteristics that all noisy
speech samples share and the granular characteristics condi-
tioned by the given target environments. The environment-
agnostic and environment-specific modules are added to create
the environmental representation. Equation 1 illustrates the pro-
posed operations:

z(x̂i) = T (E(x̂i))− {Aagn.(E(x̂i)) +Ai
spe.(E(x̂i))} (1)

where x̂i denotes the noisy speech contaminated with the i-
th type of background noise, and z(x̂i) denotes the denoised
speech representation. The resulting representation is fed into
an average pooling layer to be used as an input to the fine-tuned
downstream head. The environment-agnostic and environment-
specific modules use the same architecture, consisting of a
down-sample fully-connected (FC) layer, the attention module,
and an up-sample fully-connected (FC) layer. The down-sample
FC layer projects the frame-level latent speech representations
from a 512-dimensional vector into a 256-dimensional vector.
In our preliminary experiment on the development set, we ob-
served that using the 256-dimensional feature representation
preserves the emotion recognition performance while reducing
the number of parameters. The attention module uses the same
architecture of the single transformer module in the transformer
encoder of the wav2vec2-large-robust network [1, 22], which
consists of an MHSA layer, two FC layers implemented with
the Gaussian error linear unit (GELU) as the activation func-
tion [23], and layer normalization. The only difference from
the transformer encoder is that the embedding dimension of its
MHSA layer is 256 instead of 1,024. The up-sample FC layer
applies a linear projection to the output of the attention module.
The features are projected from the 256-dimension vector to the
1024-dimension vector to match the dimension of the output of
the transformer encoder.

In order to avoid the gradient back-propagation through
the transformer encoder, we only update the skip connection
adapters Aagnostic and Aspecific. We freeze the parameters
of the convolutional feature encoder, transformer encoder, and
downstream head during the adaptation stage. We update the
skip connection adapters with noisy speech training samples,
synthesized by manually adding the noise sounds to the clean
emotional speech samples used in the fine-tuning stage.

This paper focuses on dimensional SER tasks to predict the
emotional attributes for arousal (calm versus active), dominance
(weak versus strong), and valence (negative versus positive).
We train the adapters to maximize the concordance correlation
coefficient (CCC) between the prediction from the noisy speech
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and the ground truth labels. With this objective function, the
SER model learns to denoise the noisy contextual speech repre-
sentation by only updating the adapters to maximize the CCC.

4. Experimental settings
4.1. The MSP-Podcast Corpus
We use the MSP-Podcast corpus [24] for the clean emotional
speech corpus, which consists of natural and diverse emotional
speech samples gathered from various podcast recordings. All
the audios do not include background music or overlapped
speech, and their predicted signal-to-noise ratio (SNR) is above
20dB. This study focuses on predicting the emotional attributes
of arousal, dominance, and valence, annotated by at least five
raters. These attributes are annotated with a seven Likert-scale.
The ground truth values are estimated by averaging the scores
provided by the raters for each speaking turn. We use release 1.8
of the corpus, which has 15,326 samples in the test set, 7,800
samples in the development set, and 44,879 samples in the train
set. The partitions aim to create sets that are speaker indepen-
dent. We use the train set to fine-tune the SER model. We use
samples from the development set to select the best model dur-
ing the fine-tuning process.

4.2. Noise Preparation
To simulate the various noisy environments, we collect noise
sounds from six different conditions: radio, babble, indoor,
outdoor, house, and vehicle. For the radio condition, we use
the noise sounds collected from traditional radio shows without
copyright containing human voices, background music, and var-
ious sound effects. For the test set, we use recordings from the
noisy version of the MSP-Podcast corpus introduced by Leem
et al. [7]. It was collected by playing speech and noise sounds
with two portable speakers, and recording those mixed sounds
on a smartphone in a single-walled sound booth.

For the train and the development set, we manually add the
noise sound samples to the clean samples, which is more realis-
tic than having a noisy parallel speech set in the target condition.
To simulate the babble noise, we mix speech samples of seven
speakers collected from the TIMIT dataset [25] and the CRSS-
4English-14 corpus [26]. Krishnamurthy and Hansen showed
that this simulation approach makes individual words indistin-
guishable, resulting in babble-like noise [27].

For the rest of the noisy conditions, we collect noise sounds
from the Freesound repository [28], which contains publicly
available ambient noise sounds. We use queries related to
each environment to collect noise sounds. For example, we
use {mall, restaurant, office, airport, school, station} queries
for indoor, {city, park, street, traffic, construction, plaza} for
outdoor, {home, kitchen, living room, bathroom, bedroom} for
house, and {metro, bus, car, tram, boat, driving} for vehicle
environments. We manually add the noise signals to the clean
speech recordings of the MSP-Podcast corpus. We collect more
than 120 hours of samples for each environment so that each
speech sample in the clean MSP-Podcast corpus can be con-
taminated with a different noise sound. We directly transfer the
emotional labels of the clean version of the MSP-Podcast cor-
pus to the corresponding noisy speech samples. This study uses
the 15,326 samples from the test set for each noisy condition to
test the model in noisy conditions.

4.3. Fine-tuning Wav2Vec2.0 with clean speech
In this work, we build our base SER model by fine-tuning the
transformer encoder of the wav2vec2-large-robust model [22]

and the downstream head, which showed the best performance
in dimensional SER tasks [5]. The wav2vec2-large-robust
model consists of 24 transformer layers in the transformer en-
coder, pre-trained with diverse speech sets. We import the pre-
trained wav2vec2-large-robust model from the HuggingFace li-
brary [29]. For the efficiency and reproducibility of this study,
we prune the top 12 transformer layers from the model during
the fine-tuning stage, which is shown to preserve the recognition
performance with fewer parameters [5]. We use two fully con-
nected layers for the downstream head, where each layer has
1,024 nodes, layer normalization, and the rectified linear unit
(ReLU) as the activation function. We use dropout, with a rate
set to p = 0.5, in all the hidden layers to increase regulariza-
tion. We use a linear output layer with three nodes to predict
emotional attribute scores, where each node predicts the scores
for arousal, dominance, and valence.

During fine-tuning, we apply Z-normalization to the raw
waveform by using the mean and standard deviation estimated
over the training set, and min-max normalization to the emo-
tional labels, mapping them to the range of 0 to 1. We use the
Adam optimizer [30] with a learning rate of 0.00001. We use 32
utterances per mini-batch and update the model for 20 epochs.
All of our experiments are conducted on a single NVIDIA
GeForce RTX 3090.

4.4. Adaptation to Multiple Noisy Environments
After fine-tuning with the clean speech, we adapt the SER
model to six different environmental conditions, as described
in Section 4.2. For each mini-batch, we randomly select one of
the six noise conditions, then use 32 samples of its noise sounds
to contaminate 32 clean speech samples from the training set
of the MSP-Podcast corpus. Since it is difficult to define the
exact SNR level of the testing condition, we assume that the
SNR level can be mismatched between the adaptation and test
stages. For this reason, we randomly select the SNR level for
the adaptation of the models among these options: {2.5, 7.5,
12.5}dB. For evaluation, the test set is created by randomly se-
lecting the SNR level among these options {0, 5, 10}dB. We run
five epochs to adapt the environment-specific and environment-
agnostic adapters to all the noisy environments.

We refer to the proposed model as skip connector adapters
(SCA). We compare this model with the fine-tuned model with-
out adaptation, which we refer to as Original. We also use
two extra baselines. The first baseline is the retrained trans-
former (RT), which retrains the downstream head and the trans-
former encoder for each environmental condition. Second base-
line is the retrained head (RH), which only retrains the down-
stream head without updating the transformer encoder. This
baseline does not use the proposed skip connection adapters.
We train multiple downstream heads, each trained with a single
type of environmental condition. As an ablation study, we also
compare the implementation of the proposed model with only
the environment-agnostic adapter (SCA-a), and with only the
environment-specific adapters (SCA-s).

5. Experiment Results
5.1. Emotion Recognition Performance
We first compare the SER performance of our proposed adap-
tation strategy with the baselines in six noisy conditions (radio,
babble, indoor, outdoor, house, and vehicle). Table 1 presents
the results with three different SNR levels (10dB, 5dB, and
0dB). We run three experiments for each training method by
changing the seed value, which changes the minibatch order
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Table 1: Average CCC of 18 experiments (3 trials × 6 noises)
for each adaptation method under different SNR levels (10, 5,
and 0dB). Clean denotes the performance of the original models
without noise (∗ indicates results that are significantly better
than the ones achieved by original model without adaptation).

SNR Model Arousal Dominance Valence
Clean Original 0.666 0.599 0.529

10
dB

Original 0.596 0.562 0.473
RT 0.634∗ 0.587∗ 0.507∗
RH 0.637∗ 0.553 0.484
SCA-a 0.613 0.571 0.499∗
SCA-s 0.629∗ 0.580∗ 0.464
SCA 0.633∗ 0.573∗ 0.506∗

5d
B

Original 0.526 0.506 0.424
RT 0.581∗ 0.541∗ 0.453∗
RH 0.590∗ 0.535∗ 0.433
SCA-a 0.561 0.534 0.450∗
SCA-s 0.581∗ 0.536∗ 0.410
SCA 0.583∗ 0.540∗ 0.461∗

0d
B

Original 0.432 0.418 0.338
RT 0.492∗ 0.465∗ 0.369∗
RH 0.497∗ 0.458∗ 0.349
SCA-a 0.446 0.445 0.371∗
SCA-s 0.473∗ 0.460∗ 0.307
SCA 0.502∗ 0.469∗ 0.370∗

and the initial weights of the skip connection adapters. This
process results in 18 values (6 environments × 3 trials) for each
SNR level. We conduct a one-tailed matched-pair t-test of the
original and the other models to evaluate if the adaptation strat-
egy helps improve the performance of the original SER model
in noisy conditions. We assert significance at p-value ≤ 0.05.

Table 1 reports the average CCC of 18 experiments for
each adaptation strategy and the original model in 10dB, 5dB,
and 0dB conditions. We also report the CCC performance of
the original model tested with the clean version of the MSP-
Podcast corpus (row labeled “Clean”). Compared with the orig-
inal model, RT yields significant performance improvement in
all the prediction tasks under 10dB, 5dB, and 0dB conditions.
However, it does not always yield the best performance among
all the tested model. For example, it does not show significant
performance differences compared with the SCA model. This
result shows that retraining the transformer encoder is not al-
ways the best method to adapt the model to noisy conditions.
Although RH shows significant performance improvements for
arousal in all the noisy conditions, these trends are not observed
for valence. However, SCA-a and SCA always yield signifi-
cant improvements for valence. The RH model only uses the
output of the fine-tuned transformer encoder, indicating that re-
lying only on the fine-tuned transformer encoder is insufficient
to adapt the model to noisy environments.

In all the conditions, SCA-a shows significant improvement
for valence, but not for arousal and dominance. For valence,
SCA-a improves the original’s performance by 5.4% (10dB),
6.1% (5dB), and 9.7% (0dB). In contrast, SCA-s significantly
improves the prediction for arousal and dominance, but not
for valence. The SCA-s model shows 5.2% (10dB), 10.4%
(5dB), and 9.4% (0dB) improvements for arousal, and 3.2%
(10dB), 5.9% (5dB), and 12.2% (0dB) improvements for dom-
inance. Such contrastive results are compensated for when us-
ing both adapters in our proposed approach. The SCA model
achieves significant improvements for all the prediction tasks.
In the 0dB condition, SCA yields 16.2% (arousal), 12.2% (dom-
inance), and 9.46% (valence) performance improvements from
the original model. This result demonstrates that using both
environment-agnostic and environment-specific adapters is cru-
cial for SER in noisy speech.
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Figure 2: Analysis of the adaptation time and memory efficiency
of each adaptation method. (a) illustrates each method’s adap-
tation time normalized by the duration of the adaptation speech
samples, and (b) illustrates the number of parameters needed
for adaptation per environment.

5.2. Computation and Memory Efficiency
We first evaluate the adaptation time for each adaptation
method by measuring the time required for feed-forward, back-
propagation, and parameter update during the adaptation in one
epoch. We average the times over five epochs of three runs
(i.e., 15 numbers), dividing the result by the total duration of
the adaptation samples. Figure 2-(a) reports the results. Our
SCA method requires 59.16% less adaptation time than the
RT method, while achieving similar performance. The RH
method requires 9.4% less adaptation time than SCA, but the
performance is lower than our proposed method. These results
demonstrate that SCA is a time-efficient adaptation method that
increases the SER performance of the fine-tuned model.

We also check the number of parameters for each adaptation
method to deal with each noisy environment. We first report the
number of parameters for each method in a single environment
in Figure 2-(b). Compared with RT, all the models require less
than 2% of the number of parameters to deal with each noisy
environment. Our SCA requires the equivalent of 0.98% of the
number of parameters in RT for a single environment. When
dealing with N environments, RT requires 160, 073, 856 × N
parameters, while SCA only requires 790, 784 × (N + 1) pa-
rameters in addition to the pre-trained transformer model. This
analysis shows that our proposed method is memory efficient
for multiple noisy environments.

6. Conclusion
This paper proposed the skip connection adapters for
computation- and memory-efficient noise adaptation of the
Wav2Vec2.0-based SER model. We combined environment-
agnostic and environment-specific adapters to avoid back-
propagation through the transformer encoder during the adap-
tation. Our experiment verified that using skip connection
adapters yields significant performance improvements over the
original fine-tuned SER model for predicting arousal, domi-
nance, and valence. The approach decreases the time and mem-
ory requirements to adapt the model to the new domain, com-
pared to fine-tuning the entire transformer to the target noisy
condition. In our future work, we plan to analyze why the
environment-agnostic adapter helps the valence prediction, and
the environment-specific adapter helps the arousal and domi-
nance predictions. Studies have shown particular patterns in
the expression of valence that make it different from arousal
and dominance [31]. We also plan to work on applying this
approach to HuBERT [2] and WavLM [32], which have also
shown good performance in SER tasks. This model can also be
useful for other speech processing tasks.
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