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Abstract
In task-oriented dialogues, dialogue state tracking (DST) is a
critical component as it identifies specific information for the
user’s purpose. However, as annotating DST data requires a
significant amount of human effort, leveraging raw dialogue is
crucial. To address this, we propose a new self-training (ST)
framework with a verification model. Unlike previous ST meth-
ods that rely on extensive hyper-parameter searching to filter out
inaccurate data, our verification methodology ensures the accu-
racy and validity of the dataset without using a fixed threshold.
Furthermore, to mitigate overfitting, we augment the dataset by
generating diverse user utterances. Even when using only 10%
of the labeled data, our approach achieves comparable results to
a fully labeled MultiWOZ2.0 dataset. The evaluation of scala-
bility also demonstrates enhanced robustness in predicting un-
seen values.
Index Terms: dialogue state tracking, self-training, augmenta-
tion, multi-domain dialogue systems

1. Introduction
The growing interest in artificial intelligence speakers and

virtual personal assistants has made task-oriented dialogue
(TOD) essential as it aims to achieve the user’s purpose through
dialogue. The TOD system typically involves multiple models,
and among them, the dialogue state tracking (DST) model plays
a critical role; it generates a belief state that contains specific in-
formation for the user’s objective [1]. For instance, in Figure 1,
the belief state includes a slot (hotel-area) and value (North)
information that is necessary to meet the user’s hotel booking
requirements.

In the field of DST research, MultiWOZ [2] has become a
widely-used benchmark dataset that includes dialogue data and
corresponding gold truth labels. Numerous studies [3, 4, 5, 6, 7]
have been conducted based on this dataset. However, creating a
realistic DST corpus poses significant challenges as it requires
domain knowledge and extensive human labor for manual anno-
tation. Additionally, DST models need to handle newly emerg-
ing values, such as hotel names or taxi departures, which need
a comprehensive understanding of conversations and avoiding
overfitting. This necessitates the inclusion of diverse user ut-
terances with appropriate annotations, which can be a time-
consuming process. Consequently, leveraging raw dialogue
without annotation, such as audio recognition results or QnA
chatting logs, is an essential and practical research area in the
field of DST

Our research focuses on addressing the question: ’How can
we leverage unannotated data to obtain more extensive infor-
mation compared to using only labeled data?’ To tackle this
challenge, we employ a self-training (ST) approach. In ST, a

Figure 1: Example of task oriented dialogue task.

teacher model is trained using a limited amount of labeled data,
which is then used to predict pseudo-labels for the unlabeled
data. A subset of the pseudo-labeled data is incorporated into
the labeled dataset, and the student model is trained using the
combined dataset. This self-training method effectively uses
the potential of unlabeled data, making it particularly suitable
in scenarios where labeled data is scarce, but unlabeled data is
abundant [8, 9, 10]. This aligns well with the challenges en-
countered in DST research.

Previous ST studies face difficulties in selecting an appro-
priate subset from the pseudo-labeled dataset. Typically, the
teacher model’s confidence value is used for selecting subset
[11, 12, 13, 14], but this method needs to find fixed thresh-
old value, which requires hyper-parmeter searching. To ad-
dress this, some researchers employ the entire pseudo-labeled
dataset [15, 16] which usually performs less than an empirically
searched threshold [17, 18, 19]. Furthermore, confidence values
are typically calculated on the log-likelihood of the generative
model [20, 21, 22], despite of there being no clear relationship
between a high log-likelihood and the accuracy of the pseudo-
labels [16].

To this end, we propose a novel self-training (ST) frame-
work that incorporates a verification model for DST. The ver-
ification model is designed to determine the validity of a dia-
logue and its pseudo-label pair. By leveraging this model, we
could select a more accurate subset from the pseudo-labeled
dataset compared to the confidence-based method. Moreover,
our proposed method directly utilizes the dialogue and label
pair, enabling the generation of a dynamic amount of subset
datasets that align with the pseudo label quality of the teacher
model. This approach is more rational than using a fixed thresh-
old. Furthermore, to enhance scalability for values that are not
present in the training dataset, we have devised an augmentation
method. This method generates diverse user utterances by con-
ditioning them on previous history and belief state. To ensure
the quality of the augmented dataset, we utilize the trained veri-
fication model to select a valid subset from the augmented data.
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We refer to our proposed ST framework as LAVe, which stands
for Labeling, Augmentation, and Verification self-training.

In the experiment, LAVe has demonstrated noteworty im-
provements in the initial performance of the teacher models on
the MultiWOZ2.0 dataset, with a rise from 46.58% to 49.75%.
Remarkably, even when utilizing only 10% of the labeled data,
LAVe achieves results comparable to those of a fully labeled
dataset. Additionally, on the scalability test, our augmentation
method displays enhanced stability in predicting values that are
not included in the training dataset.

2. Method
In this section, we introduce our approach called LAVe,

which comprises a labeling, augmentation, and verification
model. We denote the conversation history as dt = (u1, s1,
u2, s2, ..., ut ) where ut is a user utterance and st is a sys-
tem utterance at turn t. A turn-level belief state at turn t is bt
which consists of slot-value pairs that are mentioned at turn t.
Accumulated belief state Bt = {b1, b2, ..., bt} represents be-
lief states from turn 1 to t and having all slot-value pairs that
user mentioned through the dialogue context. Figure 2 shows
an overview of LAVe.

2.1. Teacher Model (Labeling)

The task of the teacher model, also called the labeling
model, is to predict the belief states Bt, using the dialogue
history dt and the prompt “translate dialogue to belief state”
The teacher model is trained with original labeled data Dlabel =
{(Bn

t , d
n
t )}N,T

n=1,t=1 where the N is the number of labeled di-
alogues. The model is optimized by minimizing the negative
log-likelihood of the gold label, which is

Llabel = − 1

NT

N∑

n=1

T∑

t=1

logP (Bn
t |dnt ). (1)

After training this model, we utilize the trained teacher model
to generate pseudo-label B̃t given dt from Dunlabeled =
{dmt }M,T

m=N+1,t=1 where the M is the number of entire dia-
logues. The teacher model build the pseudo-labeled dataset
Dpseudo = {(B̃m

t , dmt )}M,T
m=N+1,t=1 by combining dt with B̃t.

2.2. Augmentation Model

To make the student model understand diverse user utter-
ances, we train the augmentation model that uses Dlabel dataset
with prompt “generate user utterance” to generate un

t given
the system utterance snt−1 and turn-level belief state bnt . The
loss function is as follows1.

Laug = − 1

NT

N∑

n=1

T∑

t=1

logP (un
t |snt−1, b

n
t ). (2)

Then, we create the Daug based on both Dlabel and Dpseudo

by augmenting user utterance and its corresponding annota-
tion. To make Daug, we first build a value dictionary for
each slot by collecting the values from the Bn

t ∈ Dlabel and
B̃m

t ∈ Dpseudo. Using this value dictionary, we augmented the
belief state by substituting it with different values. Once the be-
lief states are changed, the augmentation model generates new
user utterances that are conditioned by the system utterance and
augmented belief state. The augmented dataset is denoted as

1In MultiWOZ, the user always starts first, so we left s0 as empty.

Daug = Aug(Dpseudo ∪ Dlabel). We provide an example of this
process in Figure 3.

2.3. Verification Model

The verification model aims to distinguish the validity of
the dialogue and annotation pair. To train this model, we pair
the user and system utterance with its corresponding turn-level
belief state cnt = {snt−1, u

n
t , b

n
t } as a positive sample and make

negative samples cnt
− = {snt−1, u

n
t , b

n
t
−} by modifying the

belief state bt. During modification, we use three functions;
(1) addition: adding the random slot and value to the bnt , (2)
deletion: removing the random slot-value pair from the bnt , and
(3) substitution: replacing the value in bnt . Given the dialogue-
belief state pair and prompt “verify the dialogue-belief pair”
the model generates ‘true’ or ‘false’ according to the validness
of the pair. Equation 3 is the loss used for the verification model.

Lver =− 1

2NT

N∑

n=1

T∑

t=1

[log(P (true|cnt )) + log(P (false|cnt −))]

(3)
After we train the verification model, we filter out the incor-
rect values from Dpseudo and Daug, which is simply denoted as
Ver(Dpeseudo ∪Daug).

2.4. LAVe and Student Model

The ultimate goal of our research is to develop a student
model that surpasses the performance of its teacher model.
To accomplish this, we train the student model with the
Ver(Dpeseudo ∪Daug), which is verified pseudo-labeled and aug-
mented dataset. The loss function and training method of the
student model remain identical to those of the teacher model.

2.5. Implementation Detail

The LAVe is trained based on the pre-trained t5-small [23]
and each loss is update by the AdamW [24] optimize function.
Models are trained using max to 30 epochs and a learning rate of
1e-3 with a batch size of 16. Training is conducted in A5000x2
GPU with 3 different seeds.

3. Experiment
3.1. Dataset and Metric

MultiWOZ To check the effectiveness of our LAVe framework,
we conduct experiments with the MultiWOZ2.0 dataset [2].
It contains approximately 10,000 multi-turn dialogues, which
covers seven diverse domains2. As we assume the environment
where only a few labeled data are available, and the remaining
are unlabeled raw dialogue, we make the few-shot environment
by splitting the 10% data as labeled and the remaining 90% as
unlabeled by deleting the annotated information. For reliable
experiment results, we made 3 different 10% labaeld datasets
and report the average of the results. For the metric, we use
joint goal accuracy (JGA), which is the ratio of correct turns
to total turns, and the turn is correct if all of its predicted
slot-value pairs (Bt) are equal to the label.

Test Set for Scalability In real-world circumstances, new val-
ues are constantly emerging, and DST needs to be robust to
these values. However, the current MultiWOZ test set does
not reflect this characteristic, as most values in the test set are

2Hotel, Restaurant, Attraction, Train, Taxi, Hospital, and Police
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Figure 2: Overview of LAVe

Figure 3: Example of augmentation result.

already present in the training dataset. To address this limi-
tation, we curated a new test set that includes diverse unseen
values. In creating this new dataset, we replaced the origi-
nal values with data from different countries, such as Australia
and Canada. For instance, we modified the original dialogue “I
need to go to Cambridge” with the annotation “taxi-destination:
Cambridge” to “I need to go to Broxbourne” with the annotation
‘taxi-destination: Broxbourne”. Through this process, we cre-
ated Austrailia and Canada versions MultiWOZ test set, which
contains 8409 unseen values .

3.2. Comparison with State-of-the-Art Approaches

Table 1: Result with the DST models on MWOZ2.0.

model JGA
10% 100%

SUMBT [3] - 46.65
TRADE [25] 34.07 48.62
TRADEssup [26] 37.16 48.72
TOD-BERT [27] 38.80 -
COMER [28] - 48.79
MINTL [29] 30.32 52.10
PPTOD [30] 45.96 53.89
DS2 [31] 47.61 54.78
Teacher (Baseline) 46.58 ± 0.33 54.50
Teacher + LAVe (Student) 49.75± 0.38 N/A

In this study, we compare the performance of LAVe, on the
MultiWOZ2.0 test dataset with other state-of-the-art methods.
As our method utilizes 10% of labeled data and 90% of unla-
beled raw dialogue, we conduct comparisons in few-shot (10%)
as well as fully labeled dataset (100%) scenarios for a fair com-
parison. We note that LAVe is designed to leverage the benefits
of unlabeled data and hence, we do not evaluate its performance
in a fully labeled dataset scenario. In Table 1, our findings re-
veal that LAVe significantly increases the baseline teacher per-
formance in a few-shot learning scenario (46.58% → 49.57%).
Furthermore, LAVe shows a comparable result with those us-
ing fully labeled datasets, even when utilizing only 10% of gold

labels. This indicates that LAVe is a powerful technique for
leveraging unannotated dialogue.

3.3. Comparison with Confidence Based Selection

Figure 4: JGA of student
model with different selection
methods.

Figure 5: Ratio of correct
dialogue-annotation pairs in
selected dataset.

In this study, we evaluate the effectiveness of our proposed
verification model in the LAVe framework by comparing it with
the confidence score-based threshold method [11, 12, 13]. The
confidence score is calculated by taking the average likelihood
of the teacher model for each pseudo label, and we select the
top n% confidence-scored pseudo label. The x-axis in Figure
4 and 5 denotes the selection method. For example, x-axis 0.2
means we select top 20% of confident pseudo-label.

JGA of student model In order to assess the validity of
the selected dataset, we trained a student model using the
selected dataset and compared its JGA against confidence-
based model. As illustrated in Figure 4, our proposed
method outperforms the confidence-based model, achieving
the highest JGA. Intriguingly, we observe that utilizing the
entire pseudo-labeled dataset without any confidence-based
filtering yields also comparable result. This suggests that
although the dataset contains some incorrect pseudo-labels,
showing diverse data can increase the student model’s accuracy.

How many correct values are in the selected dataset?
The dataset’s validity is implicitly evaluated by comparing the
student model’s JGA in Figure 4. In Figure 5, we conduct a
more direct analysis of the selected data’s quality by illustrating
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Table 2: Results of scalability test with Australia and Canada
version test set.

Augmentation JGA [%]
Australia Canada

Teacher (Baseline) 33.27± 5.78 34.58± 3.97

EDA 30.32± 4.78 30.38± 4.88
Back Translation 33.45± 3.96 34.05± 4.68
LAVemaintain 33.53± 4.59 35.96± 2.20
AEDA 33.83± 4.13 35.30 ±3.88

LAVe 36.66 ± 2.64 36.77 ± 2.46

the ratio of valid dialogue-label pairs within the dataset. This
analysis is conducted by comparing the selected dataset with
the gold labels and marking the pairs that matched with the
gold label as correct and those that did not as incorrect. The
results in Figure 5 show that our selected dataset has the
highest ratio of correct pairs, indicating its superiority over
confidence-based methods. It is worth noting that the trends
observed in JGA in Figure 4 and the validity ratio trends in
Figure 5 are not aligned. This finding suggests that finding the
optimal confidence threshold does not guarantee a high level of
validity in the selected dataset. However, our proposed method
ensures both a high JGA performance for the student model
and a valid dataset selection.

3.4. Scalability Test

To evaluate the generalizability of our augmentation meth-
ods, we conducted an analysis with other augmentation meth-
ods including EDA[32], AEDA[33], Back Translation3[34] and
LAVe with augmenting using only bt. Specifically, we exam-
ine the performance of our approach using the performance on
the Australia and Canada variants of the MultiWOZ test set,
which contain unseen values. In table 2, LAVe outperforms
other methods by a substantial margin on both datasets. This
suggests that our method is highly effective and helps the base-
line to be robust to the values that are not present in the training
set which is a crucial ability for DST models when they are de-
ployed in the real world.

4. Analysis
4.1. Ablation Study

Table 3: Ablation study results of the LAVe.

model JGA

Teacher (Baseline) 46.58 ± 0.33

+ DPseudo 48.34 ± 0.43
+ DPseudo ∪DAug 48.48 ± 0.67
+ Ver(DPseudo ∪DAug ) (LAVe) 49.75 ± 0.38

To analyze the effects of our labeling, augmentation, and
verification methods, we conduct an ablation study by adding
each method to the baseline (Table 3). In the table, notation
Ver(Dpseudo ∪ Daug) means verified result of Dpseudo and Daug

dataset. Overall, our method increases the baseline by 3.17% by
leveraging the unlabeled raw dialogue. More specifically, our
pseudo-labeling method increased the accuracy by 1.76%, and

3Helsinki-NLP/opus-mt-en-de in https://huggingface.co/

Table 4: Comparison of error rate per each type with the base-
line. The numer in parenthesis are actual amount of errors.

model Error Type
Wrong Ignore Spurious

Teacher (Baseline) ▽0%
(3219)

▽0%
(2553)

▽0%
(3072)

+ Dpseudo
▽2.54%

(3138)
▽7.12%

(2372)
▽11.79%

(2709)

+ Dpseudo ∪Daug
▽2.55%

(3137)
▽5.89%

(2403)
▽13.91%

(2644)

+ Ver(Dpseudo ∪Daug)
▽2.74%

(3131)
▽10.46%

(2287)
▽13.95%

(2643)

with combined augmentation, the difference increased to 1.9%.
Furthermore, by applying the verification method to Dpseudo ∪
Daug, the accuracy increases 1.27%, additionally. This result
shows that our labeling, augmentation and verification models
all help to increase the baseline, and the verification model ef-
fectively filter out the incorrect value from Dpseudo and Daug.

4.2. Error Analysis

To identify which part of our method reduces the error, we
conduct ablation studies and check the decreased rate for each
error type. Table 4 presents the percentage of reduced error rate
compared to the baseline, and the scripted number in parenthe-
ses indicates the actual error cases. The type “Wrong” indi-
cates the model predicts a different value despite being correct
in predicting a slot. In contrast, “Ignore” means the model pre-
dicts no value for a slot that is mentioned in dialogue. Finally,
“Spurious” denotes the model predicted slot not mentioned in
dialogue. The experiment results show that pseudo-labeling ef-
fectively reduces all types of errors; this shows that our labeling
model effectively utilizes the raw dialogue for students. How-
ever, although the augmentation model decreases spurious er-
rors, it leads to a slight increase in ignore-type errors. This
indicates that the augmentation model may generate some er-
roneous dialogue-label pairs that do not accurately capture the
augmented label information. Nonetheless, this issue is miti-
gated by our verification model, which filters out incorrect pairs
and ultimately reduces overall error rates.

5. Conclusion
In this study, we introduce a new framework, LAVe, for

self-training in DST. LAVe includes a reliable verification
method to ensure the student model’s accuracy and the dataset’s
validity. Additionally, to effectively utilize the pseudo-labeled
dataset, we propose an augmentation method that modifies the
pseudo-label. In the experiment, even when using 10% of the la-
beled dataset, LAVe performs similarly to those trained on fully
labeled datasets and shows scalability to the value that is not
in the training sets. We expect LAVe to be a good reference to
leveraging raw dialogues in dialogue-related research.
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