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Abstract
In real-time speech enhancement models based on the short-
time Fourier transform (STFT), algorithmic latency induced by
the STFT window size can induce perceptible delays, lead-
ing to reduced immersion in real-time applications. This
study proposes an efficient real-time enhancement model based
on dense frequency-time attentive network (DeFT-AN). The
vanilla DeFT-AN consists of cascaded dense blocks and time-
frequency transformers, which allow for a smooth transition be-
tween time frames through a temporal attention mechanism. To
inherit this advantage and reduce algorithmic latency, we de-
velop the lightweight and causal version of DeFT-AN with dual-
window size processing that utilizes synthesis windows shorter
than analysis windows. The benefit of DeFT-AN in identify-
ing temporal context enables the use of non-overlapping syn-
thesis windows, and experimental results show that the model
can achieve the highest performance with the lowest algorith-
mic latency among STFT-based models.
Index Terms: real-time speech enhancement, dual-window
size approach, non-overlapping synthesis window

1. Introduction
In recent years, there has been a surge in demand for teleconfer-
encing due to the pandemic situation and a growing interest in
augmented reality and the metaverse. In both these scenarios, it
is essential to suppress noises and reverberations from various
room conditions in real-time and only transmit the user’s voice.
Real-time multichannel speech enhancement is a task to achieve
this goal and aims at recovering clean speech from multichannel
signals captured in a noisy reverberant environment.

Real-time speech enhancement, however, is a complex task
that necessitates meeting three extra criteria in addition to those
required for general speech enhancement. The challenge lies in
achieving causality, low algorithmic latency, and computational
complexity. The recent 5th deep noise suppression (DNS) chal-
lenge [1] specifies that the model must be causal, which can be
accomplished by uni-directional RNNs (RNN [2], LSTM [3],
GRU [4], etc.), causal convolution, causal attention, and causal
normalization. However, the enhancement performance of the
causal system is typically lower than the non-causal system due
to missing future information. Next, the algorithmic latency
should be less than 20 ms [1]. Algorithmic latency includes the
delay caused by algorithm structures such as the STFT window
size or encoder kernel size in deep neural networks, which dif-
fers from computational latency induced by the computation of
the algorithm. Algorithmic latency exceeding the real-time re-
quirement can be perceptible and make the listener less immer-
sive in the communication. Additionally, the real-time factor
(RTF) involved with the computational complexity should be

less than 0.5 [1]. The RTF is the ratio of the time taken to exe-
cute one processing step (computing time) to the corresponding
signal duration. Although an RTF lower than 1 is required for
real-time operation, values less than 0.5 is recommended for
practical applications to accommodate the possible variation in
computing time [1].

Real-time speech enhancement can be realized in either
the time domain [5, 6] or STFT domain [7, 8]. STFT-domain
approaches generally have shown better performance through
the utilization of frequency information and spatiotemporal loss
functions that can reflect human perception [9, 10]. In STFT-
domain approaches, an analysis window is applied to each time
frame to convert them to STFT-domain, which is then fed into
the deep learning model. The output STFT generated from the
model is then transformed back to the temporal waveform by
taking inverse STFT (iSTFT), windowing individual frames us-
ing a synthesis window, and applying overlap-add operations.
STFT-domain approaches typically use a 32 ms window size
and 8 ms hop size [11], which results in algorithmic latency of
32 ms that does not meet the real-time requirements of the 5th
DNS challenge. To reduce algorithmic latency, STFT-domain
approaches like Embedding and Beamforming Network (EaB-
Net) [12] use a window size of 20 ms and a hop size of 10
ms, but this results in lowered frequency resolution. To address
the algorithmic latency problem, time-domain approaches such
as the Time-domain audio separation Network (TasNet) [13]
and Skipping Memory (SkiM) [14] have been proposed. How-
ever, the receptive field of the convolutional encoder in these
approaches is smaller than those of STFT-domain approaches,
making it difficult to enhance speech in a highly reverberant en-
vironment. Thus, the challenge is to handle reverberations from
various environments while meeting real-time requirements.

Recently, a study [11] has considered a dual-window size
processing [15] for achieving low algorithmic latency with the
STFT-based model. Although the proposed model is a non-
causal system and has not been designed for real-time process-
ing, the low algorithmic latency of the dual-window size pro-
cessing can be helpful for real-time speech enhancement [16].
The conventional dual window size processing involves using
different sizes for the analysis and synthesis window. The size
of the synthesis window utilized for the waveform generation
can range from the hop size to the analysis window size. The
synthesis window as small as the hop size can reduce the algo-
rithmic latency to the hop size, as shown in Figure 1. But in this
case, time frames do not overlap each other and discontinuity
can occur at frame boundaries. The discontinuities often reduce
speech enhancement performance and cause audible artifacts.
If non-overlapping synthesis windows can be implemented with
minimal speech degradation, it will be highly beneficial for re-
ducing algorithmic latency in real-time processing.
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Figure 1: Illustration of non-overlapping synthesis window

In this study, we propose a real-time multichannel speech
enhancement model, DeFT-AN RT, that enables the use of
non-overlapping synthesis windows with negligible audible ar-
tifacts. The proposed model is based on Dense Frequency-Time
Attentive Network (DeFT-AN) [9] that can handle multichan-
nel noisy reverberant speech with long reverberation times and
has shown the highest enhancement performance for various
datasets [10, 17]. By leveraging its ability to generate an op-
timal time-frequency mask through temporal and spectral at-
tention, we demonstrate that the dual-window size processing
combined with the causal and lightweight version of DeFT-AN
can surpass the performance of state-of-the-art real-time mul-
tichannel speech enhancement models reported to date. The
proposed model is a transformer-based model, where the causal
attention of the T-conformer refers to only the present and pre-
vious frames to determine temporal context.

We demonstrate that this advantage of causal attention
makes it possible to use short synthesis windows without mutual
overlap in time. The discontinuities in the temporal waveform
synthesized by concatenating non-overlapping iSTFTs can be
minimized, and thus, the algorithmic latency can be reduced
to the size of the non-overlapping short synthesis window. We
also attempt to reduce the high computational complexity of

Figure 2: Overall structure of DeFT-AN

the transformer-based model by utilizing grouped convolution
[18, 19] and lightweight attention. These modifications allow us
to reduce the computational complexity to approximately one-
seventh of the vanilla DeFT-AN.

The rest of the paper is organized as follows. Section 2 in-
troduces the new architecture and explains modifications from
DeFT-AN made for real-time processing. In section 3, we
present speech enhancement results in noisy reverberant envi-
ronments and a comparison to conventional time-domain and
STFT-domain speech enhancement models. We demonstrate
that the proposed model achieves better performance than the
baseline real-time models and lower algorithmic latency and
RTF than conventional STFT-based models.

2. Real-time architecture design
2.1. Proposed model

The proposed model is based on the Dense Frequency-Time
Attentive Network (DeFT-AN) [9] proposed for multichan-
nel speech enhancement in various reverberant environments,
which utilizes the complex spectral masking of noisy speech in
the STFT domain. DeFT-AN has achieved high performance
by using sub-blocks that sequentially aggregate spatial, spec-
tral, and temporal information. The model’s masking network
(Figure 2) comprises an up-convolution (Up-Conv) layer for
increasing the size of the channel dimension, serial DeFT-A
blocks for capturing information along different dimensions,
and a down-convolution for reconstructing real and imaginary
components of the target clean speech in the STFT domain.
Each DeFT-A block includes a dense block, F-transformer, and
T-conformer for aggregating information in spatial, spectral,
and temporal information, respectively. Despite the remark-
able performance of DeFT-AN in highly reverberant and unseen
environments, its high computational complexity and algorith-
mic latency are the major obstacles to implementing a real-time
speech enhancement model.

To reduce the computational complexity and memory usage
of DeFT-AN, we propose the following modifications. First,
we incorporate grouped convolution in dense blocks to reduce
the number of parameters and computational complexity of the
original 2D convolution. Second, we utilize lightweight atten-
tion in F-transformer and T-conformer, which was originally
proposed for the computer vision task [20]. The lightweight
attention decreases the length of key and value features of the
attention layer by a factor of k using a strided convolution with
equal kernel size and stride (k). This reduces the size of the
attention map by a factor of k. In this study, we implement
lightweight attention by using a strided 1D convolution before
applying linear projection to extract the key and value features.
Figure 3 illustrates the example of lightweight attention im-
plemented for the attention layer of the F-transformer. Lastly,
unlike the vanilla DeFT-AN, we remove the layer normaliza-
tions after 1× 1 convolution in the feedforward layer. Figure 4
presents the schematic of the proposed DeFT-A block, which
consists of a dense block, F-transformer, and T-conformer.

2.2. Non-overlapping synthesis window

The next challenge is to reduce algorithmic latency originat-
ing from the window size of the STFT-based model. As de-
scribed in Section 1, using a synthesis window as small as the
hop size can reduce algorithmic latency. Nevertheless, frames
generated without consideration of continuity with neighboring
frames can cause abrupt changes at both ends.
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Figure 3: Lightweight attention layer of F-transformer for low
computational complexity

In this study, we investigate the ability of the transformer-
based model in handling temporal context to mitigate the dis-
continuity problem. The T-conformer structure in DeFT-AN RT
utilizes causal lightweight attention, for which the attention map
is structured as an upper triangular matrix. The size of the at-
tention map is (T × T ), where T is equal to the number of time
frames, which allows the model to synthesize STFT data con-
sidering all the present and past samples. Unlike convolutional
neural networks (CNNs) that only analyze the temporal rela-
tionship within the receptive field of convolution kernels, trans-
formers designed for STFT data can exploit the entire temporal
relationship in a single layer. Therefore, the proposed model has
the potential to use non-overlapping synthesis windows with a
little quality degradation. In Section 3, it is demonstrated that
DeFT-AN RT can provide a high signal-to-distortion ratio and
minimize discontinuities even when non-overlapping synthesis
windows are used to minimize algorithmic latency.

3. Experiments
3.1. Experimental setup

The experiments were conducted with two datasets: spatial-
ized WSJCAM0 dataset and spatialized DNS challenge dataset.
Both datasets were simulated from four microphones arranged
on a circle of a 10-cm radius with equal inter-element angles.
The spatialized WSJCAM0 dataset was constructed by spa-
tializing speeches from the WSJCAM0 corpus [21] using the
simulated room impulse responses (RIRs) and noises from the
channels 0, 2, 4, and 6 of the REVERB challenge dataset [22].
The reverberation times (RT60) of RIRs were within the [0.2,
1.3] seconds range, and signal-to-noise ratios (SNRs) of noisy
speech were in the range of [5, 25] dB. The details on creating
this dataset can be found in [10]. The spatialized DNS challenge
dataset consists of spatialized speech and noise from the DNS
challenge 2020 corpus [23], with SNRs and RT60s ranging be-
tween [-10, 10] dB and [0.2, 1.2] s, respectively. The algorithm
for creating the spatialized DNS challenge dataset is described
in [17]. The RIRs were simulated using Pyroomacoustics [24],
which uses the image source method. Different rooms were
used for training, validation, and testing, so the tests were done
for the rooms unseen during the training. All utterances were
resampled at 16 kHz, and 4-s long utterances were randomly
selected for training.

The final model of DeFT-AN RT has the following parame-

Figure 4: Modified DeFT-A block for low computational com-
plexity. (a) Dense block with grouped convolution, (b) F-
transformer and (c) T-conformer using lightweight attention

ter settings: 4 DeFT-A blocks, 4 dense blocks, 4 groups of dense
blocks, 3 sequential dilated convolutions in a T-conformer, and
a channel dimension length of 64 in the Up-Conv. The com-
plex spectra of the four microphone signals were extracted us-
ing STFT with a rectangular analysis window of 32 ms length
and 50% overlap. The RI components of complex spectra with
257 frequency bins were utilized. The model was trained for
70 epochs using ADAM optimizer [25] with an initial learn-
ing rate of 0.0004 and a learning rate scheduler reducing the
learning rate by half if the validation loss does not decrease af-
ter 3 epochs. The proposed network was trained by the phase-
constrained magnitude (PCM) loss [26], which is defined as the
sum of the real and imaginary (RI) magnitude losses for speech
and noise. The analysis window size, hop size, and synthesis
window size were set to 32 ms, 16 ms, and 16 ms, respectively.
Both the hop size and synthesis window size were configured
as 16 ms, meaning no overlap between the synthesis windows.

3.2. Experimental results

We conducted the parameter study with four variants of the pro-
posed model, as well as with the vanilla DeFT-AN, to validate
the effectiveness of modifications introduced in the proposed
model. The parameter study was conducted using only the
spatialized WSJCAM0 dataset. The first two results of Table

Table 1: Comparison of DeFT-AN variants for parameter study

Parameter SI-SDR PESQ STOI Model size MAC/s latency
Vanilla DeFT-AN

(non-causal) 15.7 3.63 98.1 2.7 M 95.6 G 32 ms

DeFT-AN RT
(proposed) 12.1 3.42 96.6 1.15 M 13.4 G 16 ms

Single
window size 12.6 3.43 97.0 1.15 M 13.4 G 32 ms

DeFT-AN RT
(hop 8 ms) 12.8 3.48 96.9 1.15 M 26.8 G 8 ms

Without grouped
convolution 12.7 3.45 97.2 2.25 M 31.6 G 16 ms

Vanilla
attention 12.9 3.47 97.0 0.82 M 17.7 G 16 ms
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Table 2: Performance comparison with baseline real-time multichannel speech enhancement models

WSJCAM0 DNS challenge Model size MAC/s RTF latency
SI-SDR PESQ STOI SI-SDR PESQ STOI

MC SkiM 4.8 2.10 83.4 2.5 1.50 62.7 5.3 M 1.9 G 0.32 1.25 ms
EaBNet 7.3 2.97 93.2 3.5 2.24 80.5 2.8 M 7.4 G 0.77 20 ms

causal DRCNet
(non-real-time) 10.0 3.34 95.7 5.9 2.56 86.3 1.4 M 7.5 G 2.02 32 ms

DeFT-AN RT 12.1 3.42 96.6 6.8 2.77 89.4 1.2 M 13.4 G 0.48 16 ms

1 present the speech enhancement performance of the vanilla
DeFT-AN and the proposed real-time model (DeFT-AN RT),
evaluated in terms of SI-SDR, PESQ, and STOI. The real-time
model exhibits more than a 3 dB reduction in SI-SDR com-
pared to the non-real-time model, but it is natural to have such
performance degradation with the real-time model at the ex-
pense of causal convolution, shorter algorithmic latency (32 ms
→ 16 ms), low computational complexity (95.6G → 13.4G in
MAC/s), and small model size (2.7M → 1.15M).

The first variant (single window size) shown in the next row
of Table 1 is identical to DeFT-AN RT except for the same win-
dow size and hop size (50% overlap) used for the synthesis win-
dow as in the analysis window. As shown in Table 1, the perfor-
mance difference between the single- and dual-window mod-
els was not substantial, with an SI-SDR difference of around
0.5 dB and almost the same PESQ and STOI. This result indi-
cates that DeFT-AN RT exhibiting only half algorithmic latency
can generate clean speech well from non-overlapping synthesis
windows without the need for overlapping between time frames.

The next variant still uses the dual window size approach
but its hop size was reduced to 8 ms to secure shorter algorith-
mic latency. The performance is slightly higher or comparable
to the single window size and proposed models, but its compu-
tational complexity is doubled. Thus, when enough computing
power is available, the dual-window approach combined with
the DeFT-AN can reduce algorithmic latency to 8 ms.

We also investigated the effectiveness of grouped convolu-
tion and lightweight attention in reducing computational com-
plexity. In the corresponding two variants (without grouped
convolution, original attention), we used the conventional 2D
convolution instead of grouped convolution in dense blocks
and full linear projection of the original DeFT-AN in the F-
transformer and T-conformer, respectively. From the results
presented in Table 1, we can see that grouped convolution and
lightweight attention contribute to a small change in speech
enhancement performances. However, the grouped convolu-
tion significantly reduces the computational complexity (from
31.6 → 13.4 GMAC/s). Using lightweight attention slightly
increases the model size, while computational complexity is re-
duced by 24.3%, and GPU memory usage is reduced by 32.3%
by using a small attention map compared to vanilla attention.

Finally, the proposed model was compared to baseline
methods. The first method is multichannel (MC) SkiM [14],
which is the time domain approach originally proposed for
speech separation but can also be used for multichannel speech
enhancement. The second model, EaBNet [12], is an STFT-
based real-time speech enhancement model with a small STFT
window size. The last model is the causal DRCNet [27]. DRC-
Net is a complex spectral mapping model based on U-Net with
a dense stack of BLSTM and 2D convolution. We included DR-
CNet as one of the baselines because the single-stage model of
DRCNet is the second best-performing model after DeFT-AN

on the spatialized WSJCAM0 dataset. For a fair comparison
with real-time models, we used the causal version of DRC-
Net. However, note that the causal DRCNet has RTF higher
than 1.0 (2.02) and is not a real-time processing model. The
performance comparison with baseline models was conducted
using both datasets, and the results are presented in Table 2.
RTF was evaluated on AMD Ryzen 7 3700X CPU clocked at
3.60GHz. The performance of MC SkiM was the lowest among
baseline models, indicating that its short encoder kernel size
cannot cover the long reverberation time of datasets dealt with
in this study. EaBNet utilizes reduced window and hop size to
meet real-time requirements and shows enhanced performance
across all evaluation measures. Causal DRCNet is unsuitable
as a real-time model due to its algorithmic latency of 32 ms
and high RTF, but its performance was significantly better than
other real-time models. The proposed DeFT-AN has lower al-
gorithmic latency and RTF than those of EaBNet, but it out-
performs all baseline models including causal DRCNet. The
only downside of the proposed model is its high computational
complexity (13.4 GMAC/s), but its RTF is the smallest among
the STFT-based models because transformers in DeFT-AN use
convolution layers supporting parallel processing.

4. Conclusion
We presented a real-time multichannel speech enhancement
model, DeFT-AN RT, which inherits the high enhancement per-
formance and parallel processing ability of DeFT-AN for real-
time processing. The proposed model utilizes grouped convo-
lution and lightweight attention to reduce computational com-
plexity and adopts a dual-window size approach such that target
speech waveforms can be synthesized without overlap of iSTFT
frames. The lightweight attention of the T-conformer is capa-
ble of analyzing all temporal relations up to the present, which
suppresses possible discontinuities at frame boundaries. This
non-overlapping synthesis window shortened the algorithmic
latency to a level suitable for real-time processing. Through the
training and testing over reverberant and noisy datasets, the pro-
posed model demonstrated its remarkable speech enhancement
performance surpassing all baseline real-time speech enhance-
ment models and the smallest real-time factor among STFT-
based real-time models.
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