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Abstract
Despite rapid progress in the voice style transfer (VST) field,
recent zero-shot VST systems still lack the ability to transfer
the voice style of a novel speaker. In this paper, we present
HierVST, a hierarchical adaptive end-to-end zero-shot VST
model. Without any text transcripts, we only use the speech
dataset to train the model by utilizing hierarchical variational
inference and self-supervised representation. In addition, we
adopt a hierarchical adaptive generator that generates the pitch
representation and waveform audio sequentially. Moreover, we
utilize unconditional generation to improve the speaker-relative
acoustic capacity in the acoustic representation. With a hierar-
chical adaptive structure, the model can adapt to a novel voice
style and convert speech progressively. The experimental re-
sults demonstrate that our method outperforms other VST mod-
els in zero-shot VST scenarios. Audio samples are available at
https://hiervst.github.io/.
Index Terms: voice conversion, voice style transfer, zero-shot
voice conversion, self-supervised speech representation

1. Introduction
Recently, voice conversion (VC) systems [1, 2, 3, 4, 5] have
shown rapid progress, with significant performance in voice
style transfer (VST). Concurrently, progress in neural vocoder
models [6, 7, 8, 9, 10] has accelerated the development of VC
systems because of their ability to generate high-fidelity wave-
form audio, and the end-to-end VC systems [11, 12, 13, 14]
have garnered significant interest by generating high-quality
converted waveform audio by combining the VC and neural
vocoder. However, end-to-end models still have low speaker
adaptation performance and require text transcripts to disentan-
gle linguistic representations from speech. Hence, there is a
limitation where a paired text-audio dataset is required.

To utilize a non-parallel speech dataset, AutoVC [1] in-
troduces an information bottleneck on content representation
to disentangle the content and style information, and train the
model with only self-reconstruction loss. However, there is a
trade-off between audio quality and VST performance accord-
ing to the information bottleneck size and there is a difficulty
in choosing the appropriate information bottleneck size. F0-
AutoVC [15] extends AutoVC to use an additional pitch con-
tour from the source speech, and transforms the normalized
pitch contour to the target pitch contour using the target speech
statistics. Despite these pitch contour guides, most F0 extrac-
tion algorithms have a problem of extracting inaccurate F0 caus-
ing unnaturalness by generating a noisy sound and a voice style
different from target speaker.
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[11, 16] utilizes a discrete unit of self-supervised speech
representation and quantized representation of normalized F0
to reconstruct speech, and convert the speech only by replacing
the speaker representation. NANSY [17] utilizes continuous
self-supervised speech representation, and introduces a speech
perturbation to acquire only the linguistic representation from
speech. HierSpeech [18] also uses self-supervised speech rep-
resentation to extract the linguistic representation from speech,
but text transcripts are required to regularize the linguistic rep-
resentation to contain only linguistic information. Diffusion-
based VC systems [19, 20] also show an improvement in gen-
erative performance. However, they also require text transcripts
to train the average-Mel encoder from the extracted phoneme
alignment [21]. In addition, most models still have limitations
in zero-shot VC, resulting from a lack of ability in VST.

To address the above problems, we propose HierVST, a hi-
erarchical adaptive end-to-end VST system. We adopt a multi-
path self-supervised speech representation from a single speech
by restoring the speaker-agnostic linguistic representation from
perturbed speech and extracting the speaker-related linguistic
representation from the original speech. We also introduce
a hierarchical adaptive generator (HAG) with source model-
ing, and connect multiple representations through hierarchical
variational inference. We found that hierarchical adaptation is
the key to the success of zero-shot VC. Moreover, we present
prosody distillation for enhanced linguistic representation and
unconditional generation on the HAG to improve the acoustic
capacity on acoustic representation for better speaker adapta-
tion. The experimental results demonstrate that our model out-
performs the others in terms of audio quality and speaker simi-
larity on the zero-shot VST without any text transcripts.

2. HierVST
We present a hierarchical adaptive end-to-end VST system,
HierVST. For untranscribed voice conversion, we introduce a
multi-path self-supervised speech representation, and adopt hi-
erarchical variational inference to connect the speech represen-
tations. Furthermore, we introduce a HAG, prosody distillation,
and unconditional generation for better speaker adaptation. The
details are described in the following subsections.

2.1. Speech representation

For voice conversion, we first decompose the speech into per-
turbed linguistic representation, linguistic representation, and
acoustic representation and resynthesize the speech from dis-
entangled representations. Following [12, 18], we use a high-
resolution linear spectrogram to extract the acoustic representa-
tion. For speaker adaptation, we also extract the style represen-
tation from the Mel-spectrogram.
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Figure 1: Overall framework of HierVST

2.1.1. Linguistic representation

Following [18], the wav2vec feature xw2v is extracted from
the representation from the middle layer of XLS-R, which is
a pre-trained self-supervised model with a large-scale cross-
lingual speech dataset. For speech disentanglement, we in-
troduce a multi-path self-supervised speech representation by
utilizing data perturbation [17] to reduce the content-irrelevant
features from the same self-supervised speech model. The ex-
tracted xw2v,pert from the perturbed speech is fed to the linguis-
tic restorer to restore the linguistic representation. The extracted
xw2v is fed to the linguistic encoder to extract an enhanced lin-
guistic representation.

2.1.2. Style representation

For global voice style representation (timbre information), we
extract the style representation from the Mel-spectrogram. The
style encoder [22] is utilized to extract the style representation
which is an averaged style vector of the single sentence, and
this encoder is jointly trained with the model in an end-to-end
manner. For hierarchical style adaptation, this style representa-
tion is fed to all networks including the linguistic restorer, lin-
guistic encoder, acoustic encoder, normalizing flow modules,
and HAG. For the zero-shot VST scenario, we do not use the
speaker ID information, and we only extract the style represen-
tation from the speech.

2.2. Hierarchical variational autoencoder

We adopt the structure of HierSpeech [18] for an end-to-end
VST system replacing the text encoder with a linguistic restorer.
We utilize the perturbed linguistic representation xw2v,pert as
conditional information c to hierarchically generate waveform
audio. We additionally use the enhanced linguistic represen-
tation from the self-supervised representation of the original
waveform, which is not perturbed. Moreover, the raw waveform
audio is reconstructed from the acoustic representation which
is extracted using a linear spectrogram during the training. To
connect acoustic and multi-path linguistic representations, we
utilize hierarchical variation inference, and the optimization ob-
jective of HierVST can be defined as follows:

log pθ(x|c) ≥ Eqϕ(z|x)
[
log pθd(x|za)

− log
qϕa(za|xspec)
pθa(za|zl)

− log
qϕl(zl|xw2v)

pθl(zl|c)
] (1)

where qϕa(za|xspec) and qϕl(zl|xw2v) are the approximate
posteriors for the acoustic and linguistic representations respec-
tively. pθl(zl|c) represents a prior distribution of linguistic la-
tent variables zl given condition c, pθa(za|zl) denotes a prior
distribution on acoustic latent variables za, and pθd(x|za) is the
likelihood function represented by a HAG that produces data x
given latent variables za. In addition, we use the normalizing
flow to improve the expressiveness of each linguistic represen-
tation. For the reconstruction loss, we use multiple reconstruc-
tion terms of a HAG as described in the following subsection.

2.3. Hierarchical adaptive generator

For end-to-end VC, we additionally introduce the HAG G
which consists of the source generator Gs and waveform gen-
erator Gw as illustrated in Figure 2. The generated representa-
tions including acoustic representation za, style representation
s are fed to Gs, and Gs generates the refined pitch represen-
tation ph and auxiliary F0 predictor is used to enforce the F0
information on ph as follows:

Lpitch = ∥px −Gs(za, s)∥1, (2)
where px is the ground-truth (GT) log-scale F0. Subsequently,
Gw synthesizes the waveform audio from za, ph, s hierarchi-
cally, and we use the reconstruction loss between the GT and
generated Mel-spectrogram transformed from waveform audio
using STFT with Mel-filter ψ as follows:

LSTFT = ∥ψ(x)− ψ(Gw(za, ph, s))∥1. (3)

In addition, we utilize adversarial training [23, 24] to im-
prove audio quality. We adopt the multi-period discrimina-
tor (MPD) [6]1 and the multi-scale STFT discriminator (MS-
STFTD) [25] which can reflect the characteristic of real and
imaginary components from a complex-valued STFT as:

Ladv(D) = E(x,za)

[
(D(x)− 1)2 +D(G(za, s))

2
]
, (4)

Ladv(ϕa, θd) = E(za)

[
(D(G(za, s))− 1)2

]
(5)

2.4. Prosody distillation

We introduce prosody distillation to extract the enhanced lin-
guistic representation zl from the linguistic encoder. zl is fed

1When we remove MPD for fast training, we observed that audio
quality perceptually decreases.
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Figure 2: Hierarchical adaptive generator

to the prosody decoder which generates the first 20 bins of
Mel-spectrogram containing the prosody representation. Un-
like ProsoSpeech [26] which restricts the speaker information
from the prosody vector, we make zl acquire speaker-related
prosody information for enhanced linguistic information. We
use the prosody loss Lprosody which minimizes the l1 distance
between the 20 bin of GT and reconstructed Mel-spectrogram.

2.5. Unconditional generation

For speaker adaptation, we use style representation as a condi-
tion for the network within the entire framework as mentioned
in Section 2.1.2. We observed that the speaker adaptation is
performed mainly in the HAG. Hence, we introduce an uncon-
ditional generation in the hierarchical generator to increase the
speaker characteristic on the acoustic representation for pro-
gressive speaker adaptation. Following [27], we simply replace
the style representation s with the null speaker embedding ∅ by
a 10% chance, so we can treat the model as a conditional and
unconditional model in the single model.

3. Experiment and result
3.1. Dataset and preprocessing

We use the large-scale multi-speaker dataset, LibriTTS [28] to
train the model (train-clean-360 and train-clean-100), which
consists of about 300-hours of speech for 1,151 speakers. We
use dev-clean subset for validation. To evaluate the zero-shot
VST task, we utilize the VCTK dataset [29]. For both datasets,
we downsample audio to 16 kHz. For self-supervised speech
representation, the downsampled audio is fed to the XLS-R
model to extract the linguistics-related representation from the
middle layer of XLS-R, and this representation is a sequence
of 1024-dimensional vectors downsampled from 16 kHz audio
(320× downsampled scale). We also utilize high-resolution F0
which is a sequence of F0 extracted from audio (80× downsam-
pled scale). For the Mel-spectrogram, we transform audio using
the short-time Fourier transform (STFT) with a hop size of 320,
a window size of 1,280, an FFT size of 1,280, and 80 bins of
Mel-filter.

Table 1: Many-to-many VST results from LibriTTS dataset
Method nMOS sMOS CER WER EER SECS

GT 4.55±0.04 3.97±0.01 0.54 1.84 - -
HiFi-GAN [6] 4.17±0.04 3.86±0.03 0.60 2.19 - 0.986

AutoVC [1] 2.57±0.06 2.21±0.05 5.34 8.53 33.30 0.703
VoiceMixer [31] 2.84±0.06 2.49±0.05 2.39 4.20 16.00 0.779
DiffVC [19] 3.50±0.06 3.02±0.05 7.99 13.92 11.00 0.817

SR [11] 2.75±0.06 2.32±0.05 6.63 11.72 33.30 0.693
YourTTS [32] 2.83±0.06 2.35±0.04 5.43 8.79 8.00 0.769
HierVST (Ours) 4.06±0.05 3.29±0.04 0.84 2.22 5.25 0.827

3.2. Training
We use the AdamW optimizer [30] with the same setting of
[18]. We train HierVST with a batch size of 128 for 600k steps
on four NVIDIA A100 GPUs (six days). For one-shot VST, we
fine-tune the model with only a single sample of novel speakers
for 1,000 steps and we initialize the same AdamW optimizer
but a lower learning rate of 1 × 10−4. We train the model for
ablation study with a batch size of 64 on two A100 GPUs for
300k steps. For efficient training, we use a segment audio of
61,440 frames for input audio and utilize the windowed gener-
ator training with additional sliced audio of 9,600 frames.

3.3. Implementation details
The linguistic restorer, linguistic encoder, and acoustic encoder
consist of 16 layers of non-causal WaveNet with 192 hidden
dimensions. The flow modules including fl and fa consist of
four affine coupling layers with four layers of WaveNet. For
the HAG, the source generator consists of two upsampling lay-
ers of [2,2] and two multi-receptive field fusion (MRF) blocks,
and the waveform generator consists of HiFi-GAN [6] and a
conditional layer from the representation of the source gener-
ator. We use the upsampling rate of [4,5,4,2,2] and an ini-
tial channel of 512. For the discriminator, we use the MPD
[6] and the MS-STFTD [25] with five different sizes of win-
dow([2048,1024,512,256,128]). We use a shallow feed-forward
transformer network with two layers and 768 hidden dimen-
sions for prosody distillation. For the unconditional generation,
we set the ratio of unconditional generation puncond to 0.1. We
fine-tune the model only with the conditional generation. The
number of entire model parameter for inference is 45M.

3.4. Many-to-many VST
We compared our model with five baseline models: (1) AutoVC
[1], information bottleneck based VC model. (2) VoiceMixer
[31], similarity-based information bottleneck and adversarial
training based VC model. (3) DiffVC [19], diffusion-based VC
model. (4) Speech Resynthesis (SR) [11], an end-to-end model
using discrete speech units. (5) YourTTS2 [32], an end-to-end
speech synthesis model, based on VITS [12]. Following [18],
we conduct naturalness mean opinion score (nMOS) and simi-
larity MOS (sMOS) for subjective evaluation metrics. To eval-
uate linguistic consistency, we also calculate the character error
rate (CER) and word error rate (WER) by Whisper large model
[33]. For the speaker similarity measurements, we calculate
the equal error rate (EER) of the automatic speech recognition
model [34] and speaker embedding cosine similarity (SECS) of
Resemblyzer3 between the target and converted speech.

Table 1 shows that our model achieves a significant im-
provement in all evaluation metrics. Specifically, audio quality
improved and the speaker adaptation quality increased in terms

2We used an official pre-trained model. However, this model was
trained with LibriTTS, VCTK, and an additional dataset. In addition,
YourTTS utilizes text transcripts for training.

3https://github.com/resemble-ai/Resemblyzer
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Table 2: Zero-shot VST results on unseen speakers from VCTK
Method nMOS sMOS CER WER EER SECS

GT 4.42±0.04 3.98±0.01 0.21 2.17 - -
HiFi-GAN [6] 4.15±0.05 3.91±0.02 0.21 2.17 - 0.989

AutoVC [1] 2.47±0.05 1.79±0.05 5.14 10.55 37.32 0.715
VoiceMixer [31] 2.79±0.05 2.28±0.06 1.08 3.31 20.75 0.797
DiffVC [19] 3.51±0.07 2.44±0.05 6.92 13.19 24.01 0.785

SR [11] 2.27±0.05 2.15±0.06 2.12 6.18 27.24 0.750
YourTTS [32] 2.69±0.05 2.31±0.06 2.42 6.08 4.02 0.848
HierVST (Ours) 4.12±0.05 2.70±0.06 1.14 3.46 5.06 0.850

of nMOS and sMOS, respectively. Also, our model can con-
vert the speech with a small loss of content information, where
the CER and WER are much lower than others even though our
model is trained without text transcripts. The objective metrics
for speaker similarity also show that our model can adapt well to
target voice style. Although HierVST has a similar structure us-
ing variational inference augmented with the normalizing flow
[32], our hierarchical structure has better speaker adaptation and
audio quality including naturalness and pronunciation.

3.5. Zero-shot VST
We compared the performance of zero-shot VST on the VCTK
dataset. Table 2 shows that only our model can adapt to novel
speakers in terms of EER and SECS. Note that YourTTS is
trained with the VCTK dataset so the VST scenario of YourTTS
is not the zero-shot VST. Nonetheless, the zero-shot speaker
adaptation results of our model show a speaker adaptation qual-
ity similar to that of YourTTS in terms of EER and SECS. Fur-
thermore, our model also achieves much better performance on
both subjective metrics than others, and this means our model
robustly converts speech even in the zero-shot VST scenario
with a hierarchical adaptive structure.

Table 3: One-shot VST results on VCTK dataset according to
the number of fine-tuning steps

Metric
Step 0 (zero-shot) 100 300 500 1000 1500

CER (↓) 1.14 0.74 0.76 0.66 0.79 1.13
WER (↓) 3.46 2.77 2.85 2.72 3.05 3.63
EER (↓) 5.06 2.67 2.25 1.56 0.80 0.50

SECS (↑) 0.85 0.87 0.89 0.90 0.91 0.92

3.6. One-shot VST
We compared the performance with zero-shot and one-shot
VST with different numbers of fine-tuning steps. Table 3
demonstrated that fine-tuning with one sample can improve the
VST performance in terms of EER and SECS. However, the lin-
guistic consistency decreased after overfitting to the small train-
ing samples so we only fine-tune the model with 1,000 steps.

3.7. Ablation study
3.7.1. Hierarchical VAE
We adopt the hierarchical VAE (HVAE) to restore the perturbed
linguistic representation and to increase the speaker adaptation
quality. Table 4 shows that removing the HVAE significantly
decreases the performance of speaker adaptation. However, we
found that the hierarchical structure requires more training steps
to achieve the lower CER and WER for proper pronunciation in
that the HierVST trained with 600k steps has a lower CER and
WER. Also, the model has better naturalness which means that
the hierarchical structure reduces the degradation of audio qual-
ity by regularizing an acoustic representation with a speaker-
related linguistic representation. Note that it is necessary to
perturb the waveform audio to remove the speaker-relevant in-
formation in the linguistic representation, so the model trained
without audio perturbation is not able to convert the voice style.

Table 4: Results of ablation study on zero-shot VST scenario

Method puncond CER WER EER SECS

HierVST (Ours) 0 2.56 5.86 6.73 0.843
0.1 2.12 4.95 6.25 0.847
0.2 2.04 4.79 7.77 0.838
0.5 1.69 4.13 8.25 0.836

− PD 0 5.48 11.81 8.5 0.835
− PD − HVAE 0 1.05 3.66 11.75 0.816
− PD − HVAE − HAG 0 0.78 3.09 13.75 0.816

3.7.2. Hierarchical adaptive generator

We modify the HiFi-GAN by combining it with the source gen-
erator. With the distillation of the source-related representation,
the model with a HAG synthesizes audio with better quality as
indicated in Table 4 and the adaptation performance also in-
creased regarding EER.

3.7.3. Prosody distillation

Although hierarchical VAE can improve the VST quality, the
model has a higher CER and WER. Therefore, we addition-
ally introduce prosody distillation (PD) for enhanced linguis-
tic representation. Adding prosody distillation improves the
overall performance regarding all metrics with an enhanced lin-
guistic representation. We also compared the 20 bins of Mel-
spectrogram with the full-band of the Mel-spectrogram, and the
model trained with 20 bins of Mel-spectrogram has a lower F0
l1 distance in the source generator, therefore, we used only 20
bins for the prosody distillation.

3.7.4. Unconditional generation

We train the model with unconditional generation on the HAG
with different unconditional ratios. We found that increasing the
unconditional ratio improved the pronunciation of the converted
speech. However, a model with a small ratio could generate
converted speech with better speaker adaptation. Table 4 shows
that adopting an unconditional generation with a proper ratio
simply improved the model capacity for generation tasks.

4. Conclusion
We present HierVST, which can convert speech by hierarchi-
cally transferring the voice style. With only a speech dataset, we
restored the linguistic representation from the disentangled rep-
resentation, reproduced the enhanced linguistic and rich acous-
tic representation, and generated high-quality converted speech.
Furthermore, we improve the capacity of the entire model using
prosody distillation and unconditional generation. The experi-
mental results demonstrated that our model can generate con-
verted speech with high-fidelity audio and high-quality speaker
adaptation. We see that our hierarchical adaptive structure can
be adopted in unit-based speech-to-speech translation systems
to generate an expressive voice style of translated speech. Al-
though our model generates high-quality converted speech, our
model has little controllability without converting the timbre.
In future works, we will utilize pitch and duration to directly
control the intonation and rhythm of speech.
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