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Abstract
In addition to linguistic information, speech contains non-
lexical information, such as emotion, gender, and speaker iden-
tity. Recent self-supervised learning methods for speech repre-
sentation can provide powerful initial feature spaces. However,
a few training samples in speech emotion recognition cannot
fully utilize the vast pretrained feature space. Herein, we pro-
pose an effective use of the feature space. First, to obtain more
complementary information, diverse features are extracted by
mapping the same utterance to different clusters via multitask
learning. Thereafter, fusion methods are investigated according
to the correlation among the diversely mapped features. The
proposed methods are evaluated on two emotional speech cor-
pora. The experimental results show that the proposed meth-
ods can effectively utilize the vast pretrained feature space and
achieve state-of-the-art performance, with an unweighted aver-
age recall of 78.45% on the benchmark IEMOCAP corpus.
Index Terms: speech emotion recognition, self-supervised
learning, fusion, multitask learning, multilingual

1. Introduction
Speech emotion recognition (SER) is a process for recogniz-
ing the emotional states of humans using speech signals. Deep
learning has achieved excellent results in speech processing,
and SER has gained popularity for empathic human-machine
communication. Recently, large-scale self-supervised learning
(SSL)-based pretrained speech models, such as wav2vec [1][2],
HuBERT [3], and WavLM [4][5], have been developed. As
these SSL-based models are trained on large-scale unlabeled
speech corpora, they do not rely on any linguistic information
[6]. Thus, they have been adopted as initial models or fea-
ture extractors for various downstream speech-processing tasks
(e.g., SER), and their use has resulted in significant performance
improvements [6][7].

Multitask learning (MTL) is an effective method for im-
proving the performance of the main task by adding auxiliary
tasks [8]. Using deep learning, MTL provides an effective ap-
proach for obtaining universal and task-invariant information
from multiple tasks. MTL is applied to integrate utterance-
wise contrastive loss with the SSL objective function for ex-
tracting unsupervised speaker information [5]. Furthermore,
efforts, such as the development of domain-adversarial neural
networks (DANNs), have been devoted to aggressively remov-
ing domain information and thereby improving generalization
capability [9]. DANNs have been adopted for domain gener-
alization with the purpose of learning common features from
multiple domains such that class-discriminative information is
emphasized and domain-specific information is removed [10].
However, a comparison study [11] reported that deep models

trained on large datasets learn a speaker-invariant representation
in automatic speech recognition (ASR), and the effect on the
acoustic model is minor, regardless of whether MTL or DANN
is used. Furthermore, removing domain-specific information
using a DANN may cause the loss of class-discriminative infor-
mation [12].

Fusion or ensemble methods combine several individual
systems to improve performance. Because emotions can be
expressed in different ways, such as facial expressions, body
gestures, and speech, numerous studies have focused on fu-
sion methods for multimodal emotion recognition [13][14]. The
main achievement of fusion methods is based on the diversity
of individual systems. Therefore, various individual systems
lead to further improvement. Herein, we use a single modality,
namely speech, to utilize SSL-based pretrained speech models
and map an utterance into diverse features via MTL. As low cor-
relation and similarly high accuracy among individual systems
are required to maximize fusion effectiveness, we investigate
the performance according to whether fusion is adopted in the
intermediate or late stage.

Based on that the SSL-based pretrained speech model con-
tains extensive information, our objective is to extract various
heterogeneous features using MTL and integrate them, thereby
improving performance. The most important considerations in
improving the effectiveness of the fusion are comparatively high
accuracy and low correlation among individual systems. The
simplest fusion method is to combine multiple systems of dif-
ferent initial parameters. However, this method is implicit and
heuristic and thus not guaranteed to obtain a low correlation,
which results in low improvement by fusion. Our method of di-
verse mapping is explicit and supervised learning to obtain low
correlation through domain-biased (MTL), -unbiased (DANN),
and only emotion-based (Vanilla) features. The three main con-
tributions of this study are as follows: (1) we leverage the pre-
trained HuBERT model for diverse feature mapping and fusion
via MTL that achieves state-of-the-art SER results on the bench-
mark interactive emotional dyadic motion capture (IEMOCAP)
[15] dataset, (2) we investigate two fusion methods, namely, in-
termediate concatenation and late combination and (3) we ob-
serve similar trends in performance improvement over two het-
erogeneous languages, English and Japanese, which confirms
the effectiveness of the proposed method.

2. Method
2.1. Diverse feature mapping via multitask learning

This section briefly introduces MTL and its variant, adversar-
ial learning. Fig. 1 shows the conceptual block diagram of
the learning procedure in SER. MTL is typically used to ex-
tract common features across an emotion classifier (EC) and a
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domain classifier (DC). Thus, the features extracted from a fea-
ture extractor (FE) have both emotion and domain information.
For adversarial learning in a DANN [9], the auxiliary task in-
volves learning the DC that attempts to predict domains and
simultaneously learning the FE to remove domain information
by deceiving the DC.
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Figure 1: Conceptual block diagram of the learning procedure.
The red line is the backpropagation of losses (Lemo, Ldom) in
learning. Here, γ < 0 for the DANN, γ > 0 for MTL, and
γ = 0 for vanilla

When training a model on multiple speech corpora, we can
map an utterance into diverse features according to domain-
variant in MTL, domain-invariant in the DANN, or neglecting
domain information in vanilla. These diversely mapped features
are expected to improve emotion classification through fusion
methods. For simplicity, we use three values of γ: the vanilla
system without a domain classifier (γ = 0), DANN (γ = −1),
and MTL (γ = 1).

2.2. Additional diverse feature mapping

As the SSL-based pretrained speech model provides a large fea-
ture space, mapping features to different clusters is expected
to reduce the correlation of intermediate features or results be-
tween individual systems. In addition to the three types of
feature mapping (vanilla, MTL, and DANN) described in Sec-
tion 2.1., we evaluate an additional feature mapping method for
comparative evaluation. First, the three modules, namely FE,
EC, and DC, are learned by MTL with both correct emotion
and domain labels. Thereafter, the EC is fine-tuned again by
correct emotion, the FE is fine-tuned again by correct emotion
and fake domain label, and the DC is not fine-tuned to retain the
correct domain information. Consequently, the features, that is,
the output of the FE, are mapped into a different domain space
and thus have correct emotions and incorrect domain informa-
tion. Because we set four domains from two speech emotion
corpora according to gender and language (English male and
female speakers, Japanese male, and female speakers), we have
four ways to remap features. Fig. 2 illustrates the process of
forcing the features into one domain.

2.3. Fusion: intermediate vs. late

In this section, we discuss two fusion methods. Fusion is typi-
cally classified into three categories according to the implemen-
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Figure 2: Two-step fine-tune learning procedure for compara-
tive evaluation

tation time: early data integration, intermediate feature concate-
nation, and late decision combination [14]. Herein, we investi-
gate two fusion methods with the exception of the fusion of raw
speech data. The first method is intermediate concatenation,
which concatenates the output features of the FEs, SSL-based
pretrained models, and the other method is late combination,
which sums the output logits of the ECs. Fig. 3 illustrates these
two fusion methods.
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Figure 3: Fusion methods: intermediate feature concatenation
and late combination of summing logits

3. Experimental setup
We conduct an experimental evaluation using two emotional
speech corpora: the IEMOCAP corpus for English [15] and the
Japanese Twitter-based emotional speech (JTES) corpus [16].
The IEMOCAP corpus comprises five sessions with five female
and five male speakers. As each session is composed of one
male and one female speaker, there are a total of five sessions.
For classification experiments, we use 5531 samples from four
emotional classes: angry, happy (excited), neutral, and sad. In
the JTES corpus, 50 spoken sentences for each emotion are
acted by 50 female and 50 male participants. Table 1 summa-
rizes the corpora used in this study.

For experimental evaluation, all experiments are conducted
in a leave-one-session-out five-fold cross-validation manner;
one session is used as the test set, and the other four are used
as the training set. This configuration is consistent with those
of the IEMOCAP and JTES corpora. In the IEMOCAP, utter-
ances from eight speakers are used as the training set, and those
from the remaining two speakers are used as the test set. In
the JTES, 100 speakers are equally divided into five sessions,
with each session comprising ten female and ten male speak-
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Table 1: Number of utterances in total and by emotion class,
speakers, and emotional expression in each of two emotional
speech corpora

Corpus IEMOCAP JTES
Language English Japanese

Angry 1,103 (20%) 5,000
Happy 1,636 (29%) 5,000
Neutral 1,708 (31%) 5,000

Sad 1,084 (20%) 5,000
No. of utterances 5,531 20,000

No. of speakers 10 (f:5, m:5) 100 (f:50, m:50)
Emotional
expression

scripted &
improvised

accurately
acted

ers. Utterances from 80 speakers are used as the training set,
and those from 20 speakers are used as the test set. This five-
fold cross-validation method ensures that the experiments are
speaker-independent and establishes four domains according to
gender and language: English male speakers, English female
speakers, Japanese male speakers, and Japanese female speak-
ers. Owing to the data imbalance between classes, unweighted
average recall (UAR) is basically used as an evaluation mea-
sure. As an SSL-based pretrained speech model for feature ex-
traction, we adopt HuBERT (huber-large-ll60k) [3][17]. There
are 317 million parameters in the HuBERT large model. Due
to the small number of training samples compared to the large
pretrained model size, all training samples are included in the
training with no validation splits, and the test set is evaluated
every 100 steps to find the best model [7]. For all experiments,
we use a single NVIDIA Tesla A100 GPU.

4. Experimental results
4.1. Baseline results of single-corpus SER

For the baseline single-corpus SER, we evaluate ten trials of the
vanilla system using the IEMOCAP and JTES. Table 2 lists the
statistics, mean, standard deviation, maximum, and minimum
of the ten UARs, where the ten individual systems are fine-tuned
by different initial parameters for single-task SER.

Table 2: Statistics of ten UARs on single-corpus single-task SER
and the maximum UAR of late combination

Test IEMOCAP JTES
Mean 73.11 99.91
Stdev ± 0.69 ± 0.02
Max 74.41 99.94
Min 72.13 99.89

Late comb. 77.63 100(Max 10Ck)

The last row shows the maximum UAR among the combi-
nations of the ten trials using the late combination, summing
logits. The late combination is a combination of n trials tak-
ing k at a time without repetition, and the number is denoted
by nCk, where n≥k≥0. Compared with those obtained us-
ing the CNN-RNN-based system in the previous study [18], the
baseline performances obtained using the SSL-based pretrained
speech model, HuBERT, are significantly improved. The accu-
racy of JTES considerably exceeds that of IEMOCAP because
the emotions of JTES are accurately acted upon the same 50
sentences; this condition is called the sentence closed condition
[19]. Here, the model tends to memorize the sentence structure
itself, besides emotion.

4.2. Results of multi-corpus SER

For the experimental evaluation of multi-corpus SER, we train
multi-corpus SER models with two corpora but keep the same
five-session and five-fold cross-validation configurations used
for single-corpus SER. Furthermore, we set three types of learn-
ing in the experiments: vanilla, MTL, and DANN. Table 3 sum-
marizes the results of ten trials of multi-corpus SER.

Table 3: Statistics of ten UARs on multi-corpus SER and the
maximum UAR of late combination

Test IEMOCAP
Module Vanilla MTL DANN
Mean 73.47 72.95 72.69
Stdev ± 0.55 ± 0.74 ± 0.57
Max 74.26 74.46 73.36
Min 72.79 71.98 71.60

Late comb. 77.34 76.94 76.83(Max 10Ck)
Test JTES

Module Vanilla MTL DANN
Mean 99.78 99.79 99.75
Stdev ± 0.04 ± 0.07 ± 0.07
Max 99.84 99.86 99.84
Min 99.70 99.64 99.60

Late comb. 100 100 100(Max 10Ck)

As single-corpus SER is corpus-dependent, its performance
(see Table 2) is slightly better than multi-corpus SER (see Ta-
ble 3). The performance of DANN is inferior to those of
vanilla and MTL. The removal of domain-specific information
using a DANN may result in the loss of emotion-discriminative
information, which may eventually degrade the classification
performance. Notably, after the late combination, the perfor-
mances are significantly improved in both single-corpus and
multi-corpus SER and in the corpora, IEMOCAP, and JTES.
These significant improvements by the late combination exper-
imentally confirm that the SSL-based pretrained speech model
has a vast feature space.

4.3. Results of additional diverse feature mapping

Table 4 summarizes the UARs of the diverse feature mapping
using the fake domain labels described in Section 2.2.

Table 4: Statistics of ten UARs of diversely mapped features
using the fake domain label

Test IEMOCAP
Fake EM EF JM JF
Mean 72.60 72.46 72.37 72.67
Max 73.55 73.24 73.56 73.41

Late comb. 75.80 76.16 76.27 76.59(Max 10Ck)
Test JTES
Fake EM EF JM JF
Mean 99.83 99.84 99.80 99.80
Max 99.88 99.94 99.90 99.89

Late comb. 99.995 100 100 100(Max 10Ck)
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Because the domain is known in the learning stage, the do-
main can be assigned in a correct or fake way and thus the fea-
ture can be optionally mapped. Applying fake domain informa-
tion, such as forcing features into one domain, may be consid-
ered a domain transformation. We set up four mapping meth-
ods according to gender and language, namely, English male
speakers (EM), English female speakers (EF), Japanese male
speakers (JM), and Japanese female speakers (JF). Because the
feature has correct emotion information by fine-tuning with the
correct emotion label but incorrect domain information caused
by the fake domain label, the overall UAR is close to that of the
DANN.

4.4. Intermediate and late fusion

This section compares intermediate and late fusions. Table 5
shows the UARs compared between intermediate concatenation
and late combining.

Table 5: Full integration of intermediate concatenation and late
combination on the benchmark IEMOCAP dataset

Full integration 30C30 40C40 70C70

Intermediate concatenation 75.82 74.81 75.88
Late combination 77.31 76.76 77.51

Owing to the computational amount of the combination,
we perform a full integration of 30 trials of vanilla, MTL, and
DANN (denoted as 30C30), 40 trials of additional diverse fea-
ture mapping, EM, EF, JM, and JF (denoted as 40C40), and their
sum of 70 trials (denoted as 70C70). We omit the results of JTES
from the table because all results reach a UAR of 100%. The
model for JTES appears to have dominantly memorized the sen-
tence structure itself rather than emotion; therefore, its general-
ization capacity for speech emotion recognition is hard to eval-
uate. The late combination of summing logits is superior to the
intermediate concatenation. It is considered that more general-
ized features are obtained by intermediate concatenation, which
is known as the bottleneck feature effect [20]. These general-
ized features are potentially helpful under domain-independent
conditions but are inevitably poor under domain-dependent con-
ditions. Experimental evaluation of domain generalization re-
mains a topic for future work.

4.5. Best accuracy of the late combination

To verify the effectiveness of the late combination, we deter-
mine the best UAR from a combination of 30 trials taking k
(30Ck) without repetition. The 78.45% of UAR and 77.69% of
weighted average recall (WAR) is achieved from 30C9, combin-
ing five vanilla, three MTL, and one DANN. The 78.45% UAR
is better than the UARs in Table 3 achieved by the combination
in each module. It shows that diverse feature mapping via MTL
is effective.

Table 6: Comparison of our method with previous state-of-the-
art approaches on the benchmark IEMOCAP dataset.

Metric UAR (%) WAR (%)
Co-attention [21] 72.70 71.64
MLT-Dnet [22] 73.01 -

GLAM [23] 73.90 73.70
Spk.-norm. [24] - 74.20
Late comb. (our) 78.45 77.69(Max 30C9)

We compare the best results with those obtained using other
recent advanced methods; the results are listed in Table 6. Our
best UAR outperforms the state-of-the-art method [23][24] by
an absolute improvement of 4.55% UAR and 3.49% WAR. The
comparison shows the effectiveness of the late combination of
diversely mapped features via multitask learning, where the gra-
dients of the auxiliary task are reversed and not. Figure 4 shows
the confusion matrix of the best UAR (78.45%) on the bench-
mark IEMOCAP dataset.
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Figure 4: Confusion matrix of the best UAR (78.45%) on the
benchmark IEMOCAP dataset.

5. Conclusion
We investigate the effectiveness of diverse feature mapping
techniques using multitask learning and fusion methods. From
the experimental evaluation of the single- and multi-corpus
SER, we achieve state-of-the-art performance on the benchmark
IEMOCAP dataset:78.45% for UAR and 77.69% for WAR. We
confirm that, based on the large-scale feature space of the SSL-
based pretrained speech model HuBERT, diverse feature map-
ping via multitask learning and fusion is effective for multi-
corpus SER. More heterogeneous and similarly high perfor-
mance among individual systems can be achieved from the
SSL-based pretrained speech model HuBERT, resulting in an
excellent fusion effect. In future studies, we must evaluate the
generalization ability of intermediate concatenation and reduce
the scale of fused systems via transfer learning, such as teacher-
student networks. We are considering the sentence-independent
settings of the JTES dataset, as well as the use of the other emo-
tional speech datasets.

6. Acknowledgment
This work was supported by JSPS KAKENHI Grant Number
JP22K12105.

7. References
[1] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec:

Unsupervised pre-training for speech recognition,” in Proc. of In-
terspeech, 2019, pp. 3465–3469.

[2] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” in Proc. of NIPS, 2020, pp. 12 449–12 460.

[3] W.-n. Hsu,B. Bolte, Y.-h. h. Tsai, K. Lakhotia, R. Salakhut-
dinov, and A. Mohamed, “HuBERT: Self-supervised speech
representation learning by masked prediction of hidden units,”

3947



IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing, vol. 29, pp. 3451–3460, 2021.

[4] S. Chen et al., “WavLM: Large-scale self-supervised pre-training
for full stack speech processing,” IEEE Journal of Selected Topics
in Signal Processing, vol. 16, no. 6, pp. 1505–1518, 2022.

[5] S. Chen et al., “Unispeech-Sat: Universal speech representation
learning with speaker aware pre-training,” in Proc. of ICASSP,
2022, pp. 6152–6156.

[6] A. Mohamed et al., “Self-supervised speech representation learn-
ing: A review,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 16, no. 6, pp. 1179–1210, 2022.

[7] S. w. Yang et al., “SUPERB: Speech Processing Universal PER-
formance Benchmark,” in Proc. of Interspeech, 2021, pp. 1194–
1198.

[8] R. Caruana, “Multitask learning,” Machine learning, vol. 28,
no. 1, pp. 41–75, 1997.

[9] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F.
Laviolette, M. Marchand, and V. S. Lempitsky, “Domain adver-
sarial training of neural networks,” Journal of Machine Learning
Research, vol. 17, pp. 1–35, 2016.

[10] H. Li, S. J. Pan, S. Wang, and A. C. Kot, “Domain generalization
with adversarial feature learning,” in Proc. of CVPR, 2019, pp.
5400–5409.

[11] Y. Adi, N. Zeghidour, R. Collobert, N. Usunier, V. Liptchinsky,
and G. Synnaeve, “To reverse the gradient or not: an empiri-
cal comparison of adversarial and multi-task learning in speech
recognition,” in Proc. of ICASSP, 2019, pp. 3742–3746.

[12] A. Sicilia, X. Zhao, and S. J. Hwang, “Domain adversarial neural
networks for domain generalization: when it works and how to
improve,” in arXiv:2102.03924, 2021.

[13] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A survey of
affect recognition methods: Audio, visual, and spontaneous ex-
pressions,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 31, no. 1, pp. 39–58, 2009.

[14] J. Han, Z. Zhang, Z. Ren, and B. Schuller, “Implicit fusion by joint
audiovisual training for emotion recognition in mono modality,”
in Proc. of ICASSP, 2019, pp. 5861–5865.

[15] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S.
Kim, J.N. Chang, S. Lee and S. S. Narayanan, “IEMOCAP: In-
teractive emotional dyadic motion capture database,” Journal of
Language Resources and Evaluation, vol. 42, no. 4, pp. 335–359,
2008.

[16] E. Takeishi, T. Nose, Y. Chiba, and A. Ito, “Construction and anal-
ysis of phonetically and prosodically balanced emotional speech
database,” in Proc. of 2016 Conference of The O-COCOSDA,
2016, pp. 16–21.

[17] “HuBERT,” https://github.com/pytorch/fairseq/tree/master/
examples/hubert.

[18] S. -w. Lee, “Ensemble of domain adversarial neural networks for
speech emotion recognition,” in Proc. of IEEE ASRU, 2021, pp.
374–379.

[19] Y. Chiba, T. Nose, and A. Ito, “Multi-stream attention-based
BLSTM with feature segmentation for speech emotion recogni-
tion,” in Proc. of Interspeech, 2020, pp. 3301–3305.

[20] Y. Du, J. Xu, H. Xiong, Q. Qiu, X. Zhen, C. G. Snoek, and
L. Shao, “Learning to learn with variational information bottle-
neck for domain generalization,” in Proc. of ECCV, 2020, pp.
200–216.

[21] H. Zou, Y. Si, C. Chen, D. Rajan, and E. S. Chng, “Speech emo-
tion recognition with co-attention based multi-level acoustic in-
formation,” in Proc. of ICASSP, 2022, pp. 7367–7371.

[22] Mustaqeem, and S. Kwon, “MLT-DNet: Speech emotion recog-
nition using 1D dilated CNN based on multi-learning trick ap-
proach,” Expert Systems with Applications, vol. 167, 2021.

[23] W. Zhu and X. Li, “Speech emotion recognition with global-
aware fusion on multi-scale feature representation,” in Proc. of
ICASSP2022, 2022, pp. 6437–6441.

[24] I. Gat, H. Aronowitz, W. Zhu, E. Morais, and R. Hoory, “Speaker
normalization for self-supervised speech emotion recognition,” in
Proc. of ICASSP, 2022, pp. 7342–7346.

3948


