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Abstract
Although recent zero-shot text-to-speech (zs-TTS) models have
shown high performance in terms of speech quality, speaker
similarity is not up to par. Speaker similarity can be expressed
in two different components: intra-speaker consistent compo-
nent (timbre) and inter-utterance variate component (cadence).
In this paper, we propose a timbre-cadence speaker encoder
for zs-TTS that improves speaker similarity by modeling these
components. To disentangle timbre and cadence more effi-
ciently, we employ a hierarchical structure. The cadence em-
bedding is first encoded with VICReg which enlarges the inter-
utterance embedding within a batch. Next, timbre embedding
is extracted after subtracting cadence embedding and using a
loss between timbre embedding and speaker ID-based speaker
embedding. Additionally, we propose an effective data augmen-
tation called speaker mixing augmentation, where two short ut-
terances from different speakers are concatenated for a more
robust zs-TTS model.
Index Terms: speech synthesis, zero-shot, speaker encoder,
timbre, cadence

1. Introduction
In recent years, text-to-speech (TTS) has accomplished re-
markable improvement with the emergence of various end-to-
end TTS models [1, 2, 3]. Through these advanced mod-
els, TTS expands its field from a model built with a profes-
sional voice actor to a personalized TTS. To make the TTS
model personalize, there have been several attempts to fine-
tune the pre-trained model with a target speaker data [4, 5].
Even though the required quantity of the target speaker data
for the fine-tuning is small, it is troublesome to collect such
personal data and perform fine-tuning. The zero-shot TTS (zs-
TTS) [6, 7, 8, 9, 10, 11], which uses a single utterance to clone
the voice of the target speaker without additional fine-tuning, re-
solves these inconveniences. Nowadays, large language model-
based zs-TTS [12, 13] has appeared and caught attention with
its impressive quality. However, these kinds of models require
massive data, and large resources to train the giant model. In-
stead, the more common approach in zs-TTS is to condition
speaker embedding to typical end-to-end TTS architecture.

As perceiving speaker similarity is a complex and am-
biguous problem, an insightful definition of speaker similarity
should precede. Thus in this paper, we assume that the speaker
similarity between two speeches can be viewed in two aspects.
To clarify, we restrict the definition of two terms to explain these
aspects. First, each speaker has a unique identity of voice re-
gardless of the textual context of an utterance, and we will call
this property as timbre. The other term is cadence, which is an
inter-utterance variant component related to prosody, style, and

variation of tone within the same speaker. For example, when
someone has a severe hoarse throat, they lose their original tim-
bre. Likewise, when two utterances are in different cadences,
such as dialects, they are not usually considered to be from the
same speaker. As timbre and cadence have highly complicated
relations, it is important to design an adequate speaker encoder
for zs-TTS architecture.

The most widely used speaker encoder method in the zs-
TTS is a reference encoder-based approach. The reference en-
coder takes a reference speech sample as an input and output
speaker embedding in a single vector [7, 14, 15] or sequence
of fine-grained vectors [16, 17, 18]. These approaches typically
do not regard the timbre and cadence separately but concen-
trate on extracting speaker characteristics or prosody in entan-
gled form. Therefore, we cannot guarantee that the reference
encoder model reflects the timbre or cadence sufficiently. Also,
these approaches have limitations due to the lack of additional
loss for modeling timbre and cadence separately. In [16], the au-
thors suggested using a coarse and fine-grained encoder which
is a similar concept with timbre and cadence, but they use sep-
arate encoders where timbre and cadence are not disentangled
sufficiently.

Previous studies using external pre-trained speech encoder
modules have also been proposed [6, 8, 19]. It transfers
speaker information from a well-trained speaker verification
(SV) model to the zs-TTS model. As the SV models are typ-
ically trained with a large number of speakers, they accomplish
good speaker generalization. However, since the purpose of the
SV model is to verify the identity of the speaker, it focuses on
detecting timbre rather than cadence.

To model timbre and cadence separately, we propose a
timbre-cadence speaker encoder (TiCa) that has a hierarchical
structure. A hierarchically structured encoder has been pro-
posed to capture and disentangle the global and local infor-
mation [20, 21, 22]. However, these methods concentrate on
modeling prosody rather than speaker identity. In addition to
the hierarchical structure, to extract intra-speaker invariant tim-
bre embedding, we constrain timbre embedding to be close to
the embedding achieved from the speaker ID-based embedding
table. We can adopt the speaker ID-based embedding table di-
rectly as timbre embedding, however, it is impossible to handle
the zero-shot scenario. As the cadence embedding should have
a large variance among the utterances, we employ VICReg [23]
which provides regularization to enlarge the variance of cadence
embedding within a batch.

In our preliminary experiments, the conventional zs-TTS
models have shown unstable performance such as switch-
ing timbre within an utterance. Thus, we propose an effec-
tive augmentation method called speaker mixing augmentation
(SMAug) to make a robust zs-TTS model. SMAug concatenates
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two different utterances from other speakers. By this, the model
is exposed to the switching cases of speaker embeddings dur-
ing training, which results in a robust model. Moreover, since
SMAug makes various combinations of utterances, it augments
the training dataset and reinforces the robustness.

2. Proposed method
2.1. Timbre-cadence speaker encoder

As mentioned in Section 1, timbre is an intra-speaker consis-
tency component of a speaker that is globally unique regard-
less of what the speaker speaks. On the other hand, cadence
is an inter-utterance variant component of a speaker that varies
locally depending on the utterance. To separate these compo-
nents, we suggest a hierarchical speaker encoder as in Figure 1.
As the speaker encoder encodes gradually from local to global
information, the cadence embedding is first extracted using the
attention pooling at the lower part of the speaker encoder. For
attention pooling, we use the method of deriving a weighted
mean vector as attentive statistical pooling in [24]. Then, the
output of the attention pooling layer of the cadence embedding
is subtracted to disentangle the timbre and cadence information.
The timbre embedding is extracted after two convolution blocks
followed by attention pooling. Finally, the timbre and cadence
embeddings are concatenated and form the speaker embedding
conditioned on the zero-shot TTS (zs-TTS) framework.

Furthermore, we utilize two supplementary losses for train-
ing the timbre-cadence speaker encoder (TiCa). First, to keep
the timbre embedding consistent within the same speaker, we
give l1-loss Ltimb against the speaker ID-based speaker em-
bedding acquired by an embedding table. Before Ltimb, we
stop the gradient of the speaker ID-based speaker embedding,
so that the training of the timbre embedding does not affect any
other modules in the TTS model.

Second, we adopt the VICReg [23] to regularize the ca-
dence embeddings within a batch to be distinct from each other
and to decorrelate the variables of each cadence embedding. We
denote a cadence embedding batch as Zcad = [z1, ..., zN ], and
the vector consists of each element in d-th dimension of zn in
Zcad as zd. The variance regularization term REGvar and the
covariance regularization term REGcov are as follows:

REGvar =
1

D

D∑

d=1

max (0, γ −
√

V ar(zd + ϵ)), (1)

REGcov =
1

D

∑

i ̸=j

(Cov(Zcad))
2
i,j , (2)

where D, V ar, and Cov are the dimension of embedding, vari-
ance of vector zd, and covariance matrix of Zcad, respectively.
Also, γ is a target of standard deviations, and ϵ is a small scalar
value to prevent instability of the system. For our experiment,
γ and ϵ are fixed to 1 and 10−4.

By using such losses, we can successfully restrict the tim-
bre embedding to have a smaller discrepancy within the same
speaker and enlarge the diversity of the cadence embedding
among different utterances. Finally, the total supplementary
loss Lsup can be denoted as follows:

Lsup = Ltimb + λvREGvar + λcREGcov, (3)

where λv and λc are the weight of regularization for REGvar

and REGconv , respectively. In the experiments, we fix these
weights as λv = λc = 3.0. The Lsup is added to the other TTS
losses to train the zs-TTS model.
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Figure 1: The overall architecture of the TiCa. The dashed lines
represent the components that are only used during training.
Conv Block consists of a convolution layer, a normalization
layer (default: batch normalization), and an activation layer
(default: ReLU).

To train the TiCa stably, in the early stage of the training, we
use the speaker ID embedding instead of the timbre embedding.
Then, to reduce the mismatch of the training and inference, we
train the zs-TTS model conditioning on the timbre embedding
while freezing the speaker ID embedding table for certain it-
erations. In our experiments, we trained the zs-TTS model for
450K steps with speaker ID embedding and 50K steps with tim-
bre embedding, respectively. Note that our proposed methods
can be used in the zero-shot scenario because we use the timbre
embedding extracted from the reference speech instead of the
speaker ID embedding.

2.2. Speaker mixing augmentation

In typical zs-TTS models, a single vector speaker embedding
is broadcasted into the phoneme sequence length or acous-
tic feature sequence length and then used as a condition on
TTS model. However, since the speaker embedding is fixed
throughout the whole utterance, it can weaken the role of the
speaker embedding and result in synthesized speech with un-
stable speaker similarity during inference.

To overcome this problem, SMAug concatenates two short
utterances from different speakers. As long utterances slow the
training, we constrain the candidate of SMAug to short utter-
ances. We only adopt the SMAug to utterances that have lengths
shorter than half of the longest utterance. Using SMAug, the
model encounters two different speakers in one integrated utter-
ance, which enhances the robustness of the zs-TTS model.

Data augmentation in TTS is limited since modification
in target speech can result in severe performance degradation
in naturalness. However, as the SMAug does not perturb the
speech samples, it can augment the data while not harming the
naturalness of the TTS models.

At every epoch, the SMAug performs as follows: First, for
every utterance in a dataset, if the length of utterance is shorter
than half of the max length of utterance in the data, we decide
whether to do augmentation or not with a probability of p (p =
0.5 in our experiments). Second, if augmentation is decided,
concatenate another short utterance, which is shorter than half
of the max length, in distinct speakers.

Furthermore, as the SMAug has an advantage in compati-
bility, it can be expanded to other applications easily. For ex-
ample, for expressive TTS scenarios, we can mix utterances
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Figure 2: The overall architecture of the NALPCTron.

depending on the emotion instead of the speaker or even mix
utterances depending on both emotion and speaker.

3. Experiments
3.1. Model

To show the performance of our proposed method, we per-
formed experiments by replacing speaker encoder modules in
a fixed end-to-end model which is a non-attentive version of [1]
(NALPCTron). The overall architecture of an acoustic model
in NALPCTron is in Figure 2 and we employed the Bunched
LPCNet [25] as a neural vocoder. NALPCTron’s encoder en-
codes phoneme sequence to phoneme embedding, and the du-
ration predictor predicts the duration of each phoneme. Using
duration, we upsample the phoneme embedding and feed it to
the decoder with the speaker embedding to synthesize acoustic
features. To predict the duration to be used during training, we
adopted the alignment method used in [26].

3.2. Dataset

All comparison models were trained on the LibriTTS [27] train-
clean-360 set. LibriTTS train-clean-360 set is a multi-speaker
text-audio pair dataset that contains approximately 191 hours of
speech with a 24 kHz sampling rate recorded by 904 speakers.
We randomly selected 240 utterances from arbitrary 12 speakers
as a seen test set, and the test set is excluded during training. To
evaluate the performance on the zero-shot scenario, we used the
small subset of LibriTTS test-clean set (approximately 8 hours
of audio from 39 speakers with a 24 kHz sampling rate) with 12
speakers, and text from LJSpeech [28].

We used 22-dimensional acoustic features consisting of 20
Bark cepstral coefficients, pitch period, and pitch correlation
which were the same as in [25] since we used the Bunched
LPCNet. These acoustic features were used as the target of the
acoustic model and the input of the speaker encoder.

3.3. Experiment setup

We evaluated the timbre-cadence speaker encoder (TiCa) with
the conventional reference encoder-based speaker encoders.
First, we utilized a vanilla reference encoder [14]-based speaker
embedding (REF) which consists of convolution blocks and a
recurrent pooling layer. Second, we applied Meta-StyleSpeech
[15]-based speaker encoder (META) which is a self-attention-
based method. Third, we adopted speaker embedding from the

Table 1: Objective experiment results on the seen case.

Method PER(%) SECS

GT 1.77 N/A

TiCa-NoAug 2.85 0.38
TiCa 1.79 0.41

REF 2.58 0.41
META 2.53 0.40
EXTERN 2.25 0.48

Table 2: Objective and subjective experiment results on the un-
seen case. MOS is represented with 95% confidence intervals.

Method PER SECS MOS CSMOS

GT 2.85 N/A 4.48 ± 0.06 -

TiCa-NoAug 1.93 0.38 - -
TiCa 1.34 0.42 3.98 ± 0.11 N/A

REF 1.76 0.34 3.82 ± 0.11 -0.192
META 2.33 0.32 3.58 ± 0.11 -0.139
EXTERN 1.88 0.49 3.59 ± 0.12 -0.145

pre-trained speaker verification (SV) model1 (EXTERN) [29].
Also, to show the effect of SMAug, we conduct some experi-
ments without SMAug (TiCa-NoAug)2. To train each model,
we utilized one NVIDIA A100 GPU device.

3.4. Evaluation Metrics

For an objective test, we evaluated the phoneme error rate (PER)
of the speech samples with an automatic speech recognition
(ASR) model to predict pronunciation accuracy. Since the pro-
nunciation unit of speech is phoneme, we used PER instead of
word error rate or character error rate. We employ ASR model
which is finetuned over the XLSR-53 model in Wav2vec 2.0
model [30] with the VCTK [31], LibriTTS (train-clean-100,
train-clean-360), and LJSpeech [28] dataset.

In addition, averaged speaker embedding cosine similar-
ity (SECS) was performed to evaluate the speaker similarity
between the ground truth (GT) samples and synthesized sam-
ples. For the SECS, we adopted the pre-trained ECAPA-TDNN
model 3 [32, 33] which is one of the SOTA SV models. The
SECS ranges from 0 to 1, and a higher score implies better
speaker similarity.

For the subjective evaluations, we measured the mean opin-
ion score (MOS) and comparative similarity MOS (CSMOS).
MOS estimates the perceptual speech quality by testers in the
range from 1 to 5 with an interval of 1, where 5 is the best. For
CSMOS, testers listened to one reference speech and two syn-
thesized utterances including TiCa, then were asked to choose
which utterance is similar to the reference speech in terms of
timbre and cadence with ranges from -3 (the comparative model
is much worse than TiCa) to 3 (the comparative model is much
better than TiCa) with an interval of 1. For both subjective tests,
120 testers participated via Amazon MTurk4.

1https://github.com/clovaai/voxceleb_trainer
2The samples of our experiments and details of model hyperparam-

eters can be found in https://srtts.github.io/tc-zstts.
3https://github.com/TaoRuijie/ECAPA-TDNN
4https://www.mturk.com
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(a) (b)

Figure 3: The t-SNE visualization of the (a) timbre and (b) ca-
dence embedding. The color of the dots represents the speaker.

For the PER and MOS tests in the unseen cases, we ran-
domly chose 12 speakers from LibriTTS test-clean set and used
20 and 10 sentences for the PER and MOS tests, respectively.
To test speaker similarity, it is important to evaluate the speaker
similarity with diverse reference speeches regardless of the text.
Therefore, for the SECS and CSMOS tests, nt sentences from
the LJSpeech dataset were randomly selected, where nt = 10
for SECS and 5 for CSMOS. As the reference speech for each
test sentence, we applied ns different speech samples that were
randomly selected from every 12 speakers in the LibriTTS test-
clean set, where ns = 20 for SECS and 10 for CSMOS.

3.5. Evaluation on seen speakers

In the seen speaker case, TiCa showed the best performance
in PER as shown in Table 1, which indicates that TiCa pro-
duces speech with high intelligibility. Also, since Tica showed
better performance in all objective tests than TiCa-NoAug, we
can verify that the SMAug is effective in improving pronun-
ciation accuracy and speaker similarity of the zs-TTS model.
Among the reference encoder-based methods (REF, META),
our approach showed on-par quality in SECS, which implies
that TiCa perform better or similar speaker similarity on the
seen cases. However, EXTERN showed the best scores in
SECS. Here, note that the SV evaluation system used for the
SECS tests is specialized in comparing timbre. Moreover, as
the EXTERN used the external-SV model, it can synthesize
speech with higher speaker similarity with respect to timbre,
but it cannot guarantee the higher speaker similarity in terms of
cadence.

3.6. Evaluation on unseen speakers (zero-shot TTS)

In the zero-shot scenario, as shown in Table 2, TiCa showed
superior performance in speech quality such as pronuncia-
tion accuracy and naturalness in terms of PER and MOS re-
sults. The PER of GT was worse than the others since some
noisy speeches were contained in the GT while the synthesized
speeches of the zs-TTS models were typically clean. However,
when it comes to the MOS test, GT showed a higher score,
because the testers were guided to focus on the perceptual nat-
uralness of speech.

In terms of speaker similarity, the CSMOS results demon-
strated that TiCa had better perceptual speaker similarity than
the comparison TTS models. This was because TiCa models
both the timbre and cadence of speakers. However, the overall
tendency of SECS results was similar to the seen case. As men-
tioned in Section 1, as the human sense of speaker similarity is

Table 3: Ablation studies results on supplementary losses in the
unseen case.

Method PER(%) SECS

TiCa 1.34 0.42
TiCa-NoID 1.48 0.32
Tica-NoVICReg 1.48 0.40

a combination of timbre and cadence, this can be a reason that
the tendency of CSMOS and SECS was different. Especially,
for EXTERN, it achieved the best SECS results but showed
worse results than TiCa and META in the CSMOS test. This
implies that EXTERN only focused on encoding the timbre of
the speaker.

Comparing the objective results of TiCa and TiCa-NoAug,
it demonstrates a similar trend for the seen case, which proves
the positive effect of SMAug in terms of pronunciation accuracy
and speaker similarity.

To further verify whether the timbre and cadence are en-
coded well as intended, we visualize the t-SNE [34] of timbre
and cadence embedding of TiCa as in Figure 3. The embed-
dings were extracted from 10 unseen speakers in LibriTTS test-
clean set. Speakers are distinguished by different colors and
each dot indicates different utterances. From Figure 3a, we can
confirm that the timbre embedding is well clustered for each
speaker. On the other hand, Figure 3b illustrates that the ca-
dence embeddings are more scattered and have higher variation
within inter-utterances even if they are from the same speaker.

3.7. Ablation study on supplementary losses

To study the effect of the supplementary losses in Sec-
tion 2.1, we respectively turn off the Ltimb and VICReg losses
(REGvar , REGcov) which are denoted as TiCa-NoID and
TiCa-NoVICReg. TiCa-NoID and TiCa-NoVICReg showed
worse performance than TiCa for all objective tests, which im-
plies that using both losses is effective. TiCa-NoID achieved
much lower SECS results than TiCa while that of TiCa-
NoVICReg was slightly lower than TiCa. As the SECS focuses
on the timbre information, we can conclude that the Ltimb is
important for the speaker encoder to well model the timbre in-
formation.

4. Conclusions
In this paper, we proposed a timbre-cadence speaker encoder
(TiCa) as a novel technique for cloning a target speaker’s voice.
The proposed approach assumes that speaker embedding can be
viewed as a combination of timbre and cadence. To model these
components, TiCa extracts timbre and cadence with a hierarchi-
cal structure and some effective additional losses. Moreover,
we proposed a simple but powerful speaker mixing augmenta-
tion (SMAug) that concatenates two utterances from the differ-
ent speakers for robust zero-shot TTS. From the experimental
results, it showed that our proposed methods outperform the
conventional other reference encoder-based speaker encoders.

For future work, we plan to build a more suitable TiCa ar-
chitecture by utilizing auxiliary linguistic information and to
apply TiCa to other end-to-end TTS frameworks to broaden our
method. We also aim to expand SMAug to other applications
such as expressive TTS.
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