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Abstract
We present a novel constrained learning method for hybrid au-
toregressive transducer (HAT) models that results in more val-
idated language model (LM) adaptation. LM adaptation in
HAT is justified only when the transducer logits and the sum
of speech and text logits in the label estimation sub-networks
are approximately the same. The mean squared error (MSE)
between the two logits was added to the HAT loss to encourage
the HAT models to satisfy the required condition. The proposed
method exhibited significantly lower and more stable internal
language model perplexities than those of HAT. Consequently,
it attained lower word error rates (WERs) compared to HAT
in various model architecture settings and in both cases with
and without LM adaptation. In the television content task, the
proposed method achieved a relative reduction in WERs of up
to 28.60% compared to HAT. In most cases, the accuracy of
pre-trained HAT models also improved upon training with the
additional MSE loss.
Index Terms: contextual speech recognition, language model
adaptation

1. Introduction
Neural speech recognition (NSR) systems possess an all-

neural architecture in which the mapping between speech sig-
nals and transcriptions is directly learned [1, 2, 3]. NSR sys-
tems have attracted considerable research attention because they
can learn alignments between variable input and output se-
quences without hand-crafted data such as pronunciation dic-
tionaries, whereas conventional automatic speech recognition
(ASR) systems based on hidden Markov models require this
mechanism [4, 5]. Moreover, the model of NSR systems can
be lightweight, making them suitable for use on mobile devices
while still maintaining the accuracy of conventional server-
based ASR systems [1, 2]. In addition to these structural ad-
vantages, NSR systems exhibit high accurate recognition rates
because of their excellent sequence representation capability,
which exceeds that of conventional ASR systems [3].

In ASR systems, contextual biasing is required to accu-
rately recognize unseen domain speech inputs, such as content
titles or voice-command-related utterances. On-demand lan-
guage model (LM) adaptation is the one of the most prevalently
employed mechanisms. According to Bayes’ theorem, accu-
rately computing linguistic prior probabilities is critical. [6]
introduced the density ratio method to estimate prior probabil-
ity based on an assumption, which has not been validated, that
output probabilities of NSR systems can be factorized, similar
to conventional ASR systems. As factorization-suitable struc-
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tures, transducer-based NSR systems, which can compute prior
probability with a separate part of the network, have been de-
veloped [7, 8]. The LM factorization models [7] consist of two
kinds of prediction networks to estimate alignment information
and labels. The label prediction networks have the same archi-
tecture as the neural LMs. This structural feature allows NSR
model to be learned using text-only data. Hybrid autoregres-
sive transducer (HAT) models [8] consist of two separate sub-
networks for blank and label predictions, respectively. The pur-
pose of HAT is to estimate internal LM scores corresponding to
the prior probability of the transducer-based NSR models and
replace it with external LM scores. HAT has attracted consider-
able research attention because it serves as the baseline system
not only for contextual speech recognition [9, 10, 11, 12] but
also for general speech recognition [13, 14]. HAT algorithms
can be justified only under a special condition that their output
scores are decomposed to acoustic and linguistic scores. How-
ever, HAT cannot encourage the models to satisfy the condition.

To tackle the limitation above, we introduce a novel con-
strained learning method for HAT models. Specifically, the
mean squared error (MSE) between HAT logits and the sum
of acoustic and linguistic logits in the label prediction networks
is used as an additional loss. This training mechanism is called
HAT+MSE, which overcomes the limitations of selecting vari-
ous network structures for estimating labels that were imposed
by the existing HAT. The proposed methods can be easily ap-
plied to existing HAT-based NSR systems without requiring
new hyperparameters. HAT+MSE significantly enhanced prior
estimations compared to the original HAT methods. It also im-
proved recognition accuracy across various joint network setups
for label prediction. Pre-trained HAT models can be improved
by post training with HAT+MSE.

We review the previous studies on LM adaptation and HAT
in the next section. The proposed model architecture and
HAT+MSE are explained in Section 3. The proposed method
is evaluated in Section 4. We conclude with a summary of this
work and future work in Section 5.

2. Preliminaries
2.1. Language Model Adaptation

ASR decoding problems can be formulated according to the
Bayes’ Theorem as follows:

Y ∗ = argmax
Ŷ

P (Ŷ |X)

= argmax
Ŷ

P (X|Ŷ ) · P (Ŷ ),
(1)

where a posterior P (Ŷ |X) of a hypothesis Ŷ for a given speech
signal X is factorized into an acoustic likelihood P (X|Ŷ ) and
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a prior probability P (Ŷ ). To boost the probability of certain
output label sequences with external LMs, P (X|Ŷ ) is com-
puted and multiplied with PLM (Ŷ ) for validated LM adapta-
tion. Weighted-finite state transducer (WFST)-based ASR sys-
tems [15], a kind of conventional ASR systems, are trained
separately to estimate P (Ŷ ), P (X|Ŷ ), and alignment informa-
tion is then composed into one graph. Therefore, WFST-based
ASR systems [16, 17] are suitable for computing P (X|Ŷ ) in an
on-the-fly manner. LMs could also be easily applied to neural
acoustic encoder-only ASR systems [18, 19].

However, the same mechanism is inapplicable for NSR sys-
tems because they directly learn how to maximize the probabil-
ity of a label sequence Y for given X .Among various LM adap-
tation methods [20, 21, 22, 23], one of the popular methods for
streaming NSR systems is simply to add the log probability of
LMs for the predicted text, logPLM (Ŷ ), to logP (Ŷ |X) with
a scaling factor λ during decoding [2, 20, 24] such that

Y ′ = argmax
Ŷ

logP (Ŷ |X) + λ logPLM (Ŷ ) + γR(X,Y ),

(2)
where R is an optional term scaled by γ such as a penalization
term for incomplete transcripts [21].

2.2. Hybrid Autoregressive Transducer (HAT)

HAT [8] is a variant of the recurrent neural network transducer
(RNNT) [25]. HAT models are developed with a pair of sub-
networks consisting of transcription, prediction, and joint net-
works to separately compute posteriors of blanks < b > and
labels Y = {y1, y2, y3, ..., yk, ..., yK−1}, whereas RNNT mod-
els calculate the posteriors of Ỹ = Y ∪ {< b >} through
a single sub-network. The posterior at each node of a lattice
P (Ŷu = ỹk|X, Ŷ1:u−1) is computed as follows:
{
P t,u
b = σ(Jb(ftb + gu

b )), ỹk =< b >

P t,u
l = (1− P t,u

b )Softmax(Jl(ftl + gu
l ))k, ỹk ̸=< b >,

(3)
where subscripts b and l indicate blank and label networks, re-
spectively. f and g depict a transcription and prediction net-
work output vector, respectively, for the tth input speech frame
and uth label. Here, J represents a joint network and σ indi-
cates a Sigmoid activation function. The uth local ILM score
is defined as Jl(gu

l ) and can be justified under special condi-
tions when Jl(ftl + gu

l ) ≈ Jl(ftl) + Jl(gu
l ). The sequence-level

log probability of ILMs, logPILM (Y ), is computed by nor-
malizing each local ILM score with a log softmax function and
summing them. The on-the-fly LM adaptation of HAT during
decoding is formulated as follows:

Ỹ ∗ = argmax
Ỹ

λ1 logP (Ỹ |X)− λ2 logPILM (B(Ỹ ))

+ λ3 logPLM (B(Ỹ )),

(4)

where B is a function to convert alignment paths to label se-
quences [25]. λ1 is set to 1 in this study. This inference algo-
rithm is mathematically justified as long as the aforementioned
conditions are satisfied.

3. More accurate ILM score estimation
3.1. Model Architecture

The HAT model architecture depicted in Figure 1 is described.
A pair of speech and label sequences, X and Y , are input to

Figure 1: Schematic of hybrid autoregressive transducer (HAT)
model architecture. The layer with * is not used when NJl = 0.
Transcription network (N/W) and prediction N/W can be shared
for the blank and label networks.

both sub-networks, that is, blank and label networks. In this
study, Jb is developed with two linear layers and a rectified
linear unit (ReLU) activation function in-between them. The
configuration of Jl can be varied by modifying the kinds of ac-
tivation functions and the number of pairs of linear layers and
activation functions NJl . When NJl = 0, Jl consists of an ac-
tivation function and a linear layer without the first linear layer
marked with the dashed line.

3.2. Constrained Learning with MSE loss

As explained in Section 2.2, Jl(f
t
l + gu

l ) should be approx-
imately equal to Jl(f

t
l ) + Jl(g

u
l ) to estimate ILM scores ac-

curately. Therefore, we devised the novel training method to
encourage the output vectors of Jl satisfy the condition. MSE
is used as an additional loss to minimize the difference between
Jl(f

t
l + gu

l ) and Jl(f
t
l ) + Jl(g

u
l ) and is computed as follows:

Lt,u
MSE =

1

|Y|

|Y|∑

d=1

(Jl(f
t
l + gu

l )d − (Jl(f
t
l ) + Jl(g

u
l ))d)

2 (5)

The sequence-level MSE loss is computed with the arith-
metic average over the speech feature length T and text label
sequence length U .

LMSE =
1

T

1

U

T∑ U∑
Lt,u

MSE (6)

LMSE is added to the HAT transducer loss as follows.

LHAT+MSE = LHAT + LMSE (7)

We empirically investigated whether the output logits of
HAT+MSE models satisfy the special condition for being
mathematically-justified, more than that of HAT models. Fig-
ure 2 depicts a plot of fl + gl vectors by dimension for the
in-house speech recognition tasks when a Tanh function is used
as an activation function of Jl and NJl is set to 0. Most fl + gl

mean values marked with blue dots are within the linear range
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(a) HAT (b) HAT+MSE

Figure 2: Mean and mean±0.5×standard deviation of fl + gl

vectors by dimension for the in-house (ott-contents) test set.
Tanh is used as an activation function in the label joint net-
works and NJl = 0. Dashed lines indicate the linear range of
a Tanh activation function.

of a Tanh function [8], that is, [-1.5, 1.5]. However, the val-
ues of the HAT+MSE model tend to gather more densely as in
Figure 2b. Specifically, the rate at which the fl + gl values fit
in the linear range has significantly increased from 43.88% to
69.58% by applying the proposed method. Moreover, a per-
plexity (PPL) of ILM in the models was reduced from 9.47 to
6.97. We explain the ILM performance in detail in Section 4.2.

4. Experiments
4.1. Experimental setup

NSR models were trained using the 1K-hours of Korean speech
corpus, which was recorded at sample rate of 16 kHz with 16
bits of bit depth (in-house). The in-house corpus consists of
voice command-related 1.1M utterances for various smart de-
vices, such as mobiles, televisions, among others. We randomly
sampled 1,000 utterances as the validation set. We also used the
Librispeech corpus [26], which contains 960-hours of English
speech data. We trained all NSR models using 40-dimensional
mel-frequency filterbank features plus the log-energy and their
delta and delta-delta features. The hop size was set to 10 ms,
and the signal was windowed by 25 ms. The features were nor-
malized by their means and variances either per utterance or per
speaker for the in-house and Librispeech corpus, respectively.

We used eight layers of bidirectional long short-term mem-
ories [27] with 600 hidden units for transcription networks and
three layers of unidirectional LSTMs with 512 hidden units for
prediction networks. The sum of both network output vectors
were used as an input of the joint network. For HAT, we used
the shared transcription network and prediction network for Jb

and Jl, and divided the output vectors by 1:9 for blank and label
outputs. The output dimension of linear layers in Jb and Jl were
2,000, with the exception of last linear layers. Jl predicts 71
Korean graphemes for the in-house dataset and 2,001 subword
units by byte-pair encoding [28] for Librispeech. RNNT mod-
els were developed using the same number of layers and hidden
units for the transcription and prediction network as HAT mod-
els, and their joint networks consist of a linear layer with 2,000
units, a ReLU layer, a linear layer with vocabulary size units,
and a softmax layer. The LMs were constructed with three hid-
den layers of 1,500 LSTM cells, resulting in a total number of
parameters of 54M and 60M for the in-house and Librispeech
corpus, respectively. Models were initialized by a Xavier uni-
form initializer with a fan avg mode at scale 1.0. We used the
ADAM optimizer [29] without learning schedulers. Models for
the in-house data were trained for 25 epochs, and models for

Librispeech were trained for 50 epochs. Beam search decod-
ing [25] was used with the beam widths of 4 and 8 for the in-
house and Librispeech corpus, respectively. When decoding the
HAT and HAT+MSE models with eq (4), we used the range of
λ2 as [0.01, 0.65] and λ3 as [max(λ2 + 0.1, 0.5), 1.0] for the
cases with LM adaptation. RNNT models were also decoded
with eq (2) and [0.1, 0.9] was used for λ on applying LM adap-
tation. Experiment results in the following subsections were
evaluated using λ2, λ3 and λ showing the best performance in
each case. The penalization term in eq (2) was not used for
any cases, that is, γ = 0. All experiments were conducted on
NVIDIATM A100 graphics processing units (GPUs).

For the in-house corpus, four test sets and the corresponding
text corpus were used as evaluation tasks. The two test sets “stv-
random” and “stv-difference,” and their task specific text cor-
pora were recorded from smart televisions. Here, “stv-random”
is a test set randomly selected 1,002 utterances. “stv-difference”
consists of 1,102 utterances that are differently recognized us-
ing a couple of WFST-based ASR models on the conventional
ASR system [17]. The text corpus to construct LMs for the
two sets contains 1.7M sentences. The other two test sets, “stv-
command” and “ott-contents” are internally recorded utterances
and consist of 1,000 television command-related utterances and
400 utterances related to content titles on streaming services,
respectively. To develop LMs for the two sets, we sampled
television-command-related 7K sentences and content-related
54K sentences each from the text corpus collected within the
company. In the tables of Section 4.2 and 4.3, the “o” and “x”
symbols marked in the LM section indicate the cases where LM
adaptation has been used or not used, respectively.

4.2. Results on the in-house corpus

We compared the proposed models with RNNT and original
HAT models in terms of word error rates (WERs) by varying
the setups of Jl as in Table 1. The “Average” row exhibits
the average of the 9 WERs of HAT and HAT+MSE models
for each column. A training batch consists of 46K frames, and
approximately 193K weight updates were performed according
to the validation loss. We used 8 GPUs to train each model,
and set the learning rate to 1.5e-4. The HAT and HAT+MSE
models were composed of 56M, 60M and 64M parameters re-
spectively, depending on the NJl values set to 0, 1, and 2. Ad-
ditionally, the training time also increased to 13, 15, and 18
hours, respectively. The RNNT models were built with 60M of
parameters and they required approximately 14 hours to train.
For all cases, the proposed method achieved the lowest WERs
with LMs and have shown at most 32.09% and 28.60% relative
WER reductions compared with RNNT and HAT, respectively,
for “ott-contents.” We could not observe a notable relationship
between NJl and WERs. We also examined ILM PPLs of HAT
and HAT+MSE models as in Table 2. When measuring PPLs,
transcriptions with value outside the 1.5 × interquartile range
were excluded since the outliers could distort the result values
of both HAT and HAT+MSE. The ILM PPLs of our models are
significantly lower and more stable than those of HAT models.

As depicted in Table 3, we applied HAT+MSE for the pre-
trained HAT models to investigate the possible application of
our method for the existing HAT-based ASR systems. The pre-
trained models were constructed by setting NJl = 0 and the
post HAT+MSE (HAT+PMSE) method was used for 10 epochs.
In most cases, HAT+PMSE improved the recognition accuracy
of pre-trained HAT models, but the accuracy of HAT+PMSE
models could not reach that of HAT+MSE.
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Table 1: Word error rates (WERs) of language model (LM) adaptation for in-house test sets according to label joint network Jl setups
(Acti.: an activation function in Jl, NJl : the number of first layer block in Jl) and whether the constrained training is applied

Model stv-random stv-different stv-command ott-contents

LM × o × o × o × o

RNNT 6.39 4.40 14.55 13.04 8.62 3.88 24.32 7.26

Acti. NJl HAT +MSE HAT +MSE HAT +MSE HAT +MSE HAT +MSE HAT +MSE HAT +MSE HAT +MSE

0 6.10 5.02 4.16 3.87 15.16 14.27 12.45 12.22 8.55 8.09 3.67 3.62 24.92 23.40 6.01 5.74
Sigmoid 1 6.05 5.60 4.21 3.73 15.69 15.07 12.56 12.37 8.23 8.02 3.88 3.69 25.19 24.97 7.42 5.63

2 6.03 5.31 4.21 3.78 15.37 14.74 12.66 12.22 8.48 7.66 3.82 3.53 24.81 24.49 5.96 5.85

0 5.96 5.86 4.14 4.02 16.30 14.71 12.88 11.88 8.50 7.65 3.58 3.53 23.89 23.84 6.72 5.63
ReLU 1 6.34 5.26 4.09 3.76 15.56 14.23 12.96 11.54 7.99 7.34 3.76 3.45 24.27 23.73 6.39 4.93

2 8.04 5.74 4.57 4.35 17.27 14.69 13.51 12.39 8.67 7.87 4.10 3.69 24.38 24.05 8.88 6.34

0 5.57 5.09 3.83 3.71 16.13 15.01 12.41 12.35 8.40 7.80 3.82 3.58 25.35 23.24 7.10 5.85
Tanh 1 6.79 5.38 4.83 3.54 16.00 15.22 13.32 12.22 8.86 7.44 3.76 3.38 25.03 24.38 7.69 5.90

2 6.58 5.84 4.40 3.97 15.88 15.81 12.88 12.16 8.55 8.43 3.76 3.60 25.35 24.97 7.48 6.34

Average - 6.38 5.46 4.27 3.86 15.93 14.86 12.85 12.15 8.47 7.81 3.79 3.56 24.80 24.12 7.07 5.80

Table 2: Perplexity of internal language model Jl(gl) with in-
house test sets depending on label joint network Jl setups (Acti.:
an activation function in Jl, NJl : the number of first linear
layers in Jl) and whether the constrained learning is applied

HAT HAT+MSE
Acti. \NJl 0 1 2 0 1 2

stv-random

Sigmoid 4.90 10.37 4.78 3.14 3.02 3.60
ReLU 5.39 5.86 14.45 3.10 3.05 5.79
Tanh 3.32 3.87 3.99 3.03 3.11 3.71

stv-different

Sigmoid 6.37 15.09 6.12 3.62 3.41 4.01
ReLU 6.77 7.86 25.30 3.54 3.45 5.93
Tanh 3.95 4.64 4.66 3.53 3.62 4.15

stv-command

Sigmoid 5.73 11.42 6.64 3.40 3.35 3.97
ReLU 7.07 8.09 21.41 3.40 3.34 5.86
Tanh 3.79 4.33 4.30 3.41 3.41 3.96

ott-contents

Sigmoid 19.99 79.12 19.71 6.72 6.35 6.49
ReLU 31.68 35.50 178.50 6.54 5.88 7.83
Tanh 9.47 11.81 11.74 6.97 6.89 7.27

4.3. Results on the Librispeech corpus

Our models were also evaluated on the Librispeech corpus as
in Table 4. Weight updates were conducted about 478K times
according to the loss measured on “dev-clean” and “dev-other.”
A training batch contains approximately 36K frames and about
74-hours were required to train HAT and HAT+MSE models.
Training RNNT models took about 69-hours. 5 GPUs were uti-
lized to train each model, and the learning rate was set to 1.2e-4.
We set NJl=1 and ReLU as an activation function for Jl. Each
NSR model consists of 65M of parameters. HAT+MSE mod-
els exhibited lower WERs compared with HAT models over

Table 3: Word error rates (WERs) of language model (LM)
adaptation for the in-domain corpus when constrained learn-
ing is applied for pre-trained hybrid autoregressive transducer
(HAT) models when the number of first layer blocks in the label
joint networks is set to 0

Acti. LM stv-rand. stv-diff. stv-comm. ott-cont.

Sigmoid × 5.64 15.14 8.06 24.21
o 4.11 12.16 3.93 5.85

ReLU × 5.76 14.57 8.11 24.05
o 3.68 12.28 3.82 6.39

Tanh × 5.52 15.10 8.09 24.32
o 3.73 12.62 3.52 6.12

Table 4: Word error rates (WERs) of language model (LM)
adaptation for the Librispeech corpus depending on whether
the constrained learning is applied

Model LM dev-clean dev-other test-clean test-other

RNNT × 4.28 13.19 4.52 13.33
o 3.72 11.38 3.75 11.60

HAT × 4.38 13.35 4.66 13.59
o 3.54 10.96 4.06 10.94

+MSE × 4.36 12.97 4.43 13.16
o 3.43 9.92 3.37 10.04

all evaluation sets and simultaneously minimize the accuracy
degradation from RNNT models when LMs are not applied.

5. Conclusion
We proposed HAT+MSE as a novel training method. A MSE
loss was used in addition to a HAT loss to encourage justified
LM adaptation. Compared to related work, our method does
not need structural changes of HAT models. Thus, it can be
successfully applied to HAT models either from scratch or after
regular HAT training. The prior estimation can be improved by
devising a new structure of RNNT variant models.
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