
Attention gate between capsules in fully capsule-network speech recognition

Kyungmin Lee1, Hyeontaek Lim1, Mun-Hwan Lee2, Hong-Gee Kim2∗

1Samsung Research, Samsung Electronics, Seoul, South Korea
2Biomedical Knowledge Engineering Laboratory, Seoul National University, Seoul, South Korea

{k.m.lee, ht625.lim}@samsung.com, {munhwanlee, hgkim}@snu.ac.kr

Abstract
We present a novel capsule network-based speech recognition
model that effectively utilizes the full context of past time cap-
sules. The input capsule sequences are recurrently used by fil-
tering unnecessary contextual information using multi-head at-
tention, which uses previous time output vectors as keys and
values, and current time output vectors as queries. We applied
the attention gate to the sequential dynamic routing (SDR), an
all-capsule speech recognition model. The proposed method
attained higher accuracy than the existing SDR with two atten-
tion heads on all test sets of the TIMIT and Wall Street Jour-
nal (WSJ) corpora while maintaining the same algorithmic de-
lay. For the WSJ corpus, 10.75% of a relative word error rate
(WER) reduction was achieved when the required delay was set
to 525 ms. In addition, the model showed a 1.76× reduction
in delay while maintaining the WERs. The proposed method
results in an increase of approximately 0.1% in the number of
parameters.
Index Terms: speech recognition, capsule networks, sequential
routing framework, multi-head attention

1. Introduction
Neural speech recognition (NSR) systems are systems com-
posed of neural networks (NNs) that learn sequence-to-
sequence mapping to convert variable-length speech signals
into text [1, 2]. These systems are replacing conventional auto-
matic speech recognition (ASR) systems because they require
less handcrafted data, learn better representations, and are suit-
able for model compression [3]. An NSR model consists of
two submodels, each of which can be pre-trained separately: a
speech encoder for learning acoustic features and a decoder for
learning linguistic information. NSR models can be classified
as recurrent neural network-transducer (RNN-T) networks [1]
or attention-based networks [2] according to how the two sub-
models are combined. Furthermore, a speech encoder can act
as a type of NSR model in itself [1] when configured as a con-
nectionist temporal classifier (CTC) network [4].

The selection of a speech encoder architecture is a crucial
factor that determines the stream processing abilities of an NSR
system. For instance, speech encoders built with either bidirec-
tional long short-term memory (BLSTM) [1] or standard self-
attention layers [5] contain a non-streamable architecture, as
they require a full input sequence to encode a current frame. By
adopting unidirectional long short-term memory (ULSTM) [1]
and masked attention mechanisms [6, 7], including conform-
ers [8], these sequential neural layers can encode input speech
in an online processing manner by utilizing limited contexts sur-

* Corresponding author.

rounding current frames. However, a trade-off between recog-
nition accuracy and the width of look-ahead contexts remains
unavoidable [3, 9].

A capsule network (CapsNet) [10, 11] encodes a compo-
nent of an object into a capsule: a group of neurons consisting of
an activation scalar and instantiation vector. The former denotes
the probability of the existence of the component, whereas the
latter represents its multi-dimensional properties, such as scale
and skew for images. A CapsNet trains the information trans-
fer from lower to higher capsule levels via routing methods that
employ unsupervised clustering in addition to gradient-based
training procedures. With their remarkable abilities in encoding
graphic features, CapsNets have received attention not only in
visual tasks [12, 13], but have also been applied to time-series
classification tasks [14, 15]. Recently, sequential routing frame-
work (SRF) [16] that uses a capsule-only architecture and ini-
tializes routing coefficients with previous time output vectors
was studied as an online speech recognition model with an al-
gorithmic delay. SRF models designed to use CTC [4] as a
loss function have yielded competitive accuracy in phoneme-
and character-level speech recognition while maintaining their
streaming abilities compared with both online and offline con-
ventional CTC NNs. However, a dynamic routing (DR) [10]
version of SRF requires a long algorithmic delay of almost 1
second to achieve competitive word error rates (WERs). This
long delay is a crucial drawback that impedes the fast process-
ing of speech commands and, consequently, the widespread
adoption of CapsNets in ASR systems. The SRF models can
be improved further by utilizing the complete context of past
time capsules in addition to sequential routing.

In this paper, we present a novel multi-head atten-
tion (MHA)-based gate mechanism for CapsNet-based speech
recognition models to efficiently encode sequential capsules.
The idea behind the proposed method is that previous time cap-
sules that have a stronger relationship with the current time cap-
sule contain more valuable contextual information for encoding
the current speech frame. The gate mechanism controls the in-
formation flow from previous to current time capsules by filter-
ing information from previous time capsules that is less related
to the current time capsule. Relationships between consecutive
capsules are calculated using scaled dot-product operations with
the consideration of an architectural characteristic of CapsNets
where the input vectors have multi-dimensional representations
for each dimension of a speech frame. Each capsule is trans-
formed into an input for the gate mechanism. We applied the
attention gate mechanism to the SRF models [16]. The addi-
tional number of parameters depends solely on the depth of the
capsules and the number of attention heads, as the learnable
parameters for the transformation are shared across capsules.
Compared to existing SRF models, the proposed method not

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

874 10.21437/Interspeech.2023-106

only achieved higher accuracy with the same algorithmic de-
lay, but it also successfully reduced the number of look-ahead
frames by almost half without degrading their accuracy.

To facilitate understanding of the proposed method, we first
describe a CapsNet-based speech recognition system as a pre-
liminary in Section 2. An explanation of the proposed gate
mechanism follows in Section 3. The method is evaluated using
the Linguistic Data Consortium (LDC) corpora in Section 4.
We discuss the proposed method and its evaluation results in
Section 5, and the paper is concluded in Section 6.

2. CapsNet-based speech recognition
2.1. Capsule network

CapsNets [10, 11] use a training mechanism called routing-by-
agreement to learn to transfer information between capsule lev-
els. Routing-by-agreement filters information based on a re-
lationship intensity known as agreements between lower-level
(Cl) and higher-level (Cl+1) capsules, where the range of l is
either [0, L] for capsule levels or [1, L] for capsule layers.

DR [10] is a popular routing-by-agreement method that
uses lengths of instantiation parameter vectors as activa-
tions [14, 17, 18]. To improve readability, we use ui and oj
to denote the lower- and higher-level parameter vectors, respec-
tively, where i and j are the capsule indices on each level. A
relationship between ui and oj is represented by a prediction
vector ûj|i that is calculated using a transformation matrix Wij

as follows:

ûj|i = Wij × ui. (1)

A routing coefficient rij is zero-initialized prior to routing
iterations. During each iteration, rij is first normalized to a
coupling coefficient cij through a softmax function:

cij =
exp(rij)∑Hl+1

h=1 exp(rih)
, (2)

where Hl+1 represents the number of capsules on the (l+1)-th
level. Subsequently, all ûj|i is scaled by corresponding cij and
summed up for each j-th capsule; i.e., sj =

∑
i cij ûj|i. To

ensure that the length of oj falls within a valid range of proba-
bilities, sj is normalized using a squash function:

oj =
||sj ||2

1 + ||sj ||2
sj
||sj ||

. (3)

Finally, rij is updated using the newly computed oj by a
dot product between ûj|i and oj . oj is returned following the
iteration.

2.2. Sequential routing framework

SRF [16] is an all-capsule speech recognition framework de-
signed under the assumption that in continuous speech signals,
the immediate prior time frame is similar to the current time
frame. An SRF model is trained by computing an agreement
between the past and current time capsules. Therefore, an SRF
model can encode a speech frame in a non-iterative manner
when the number of iterations Λ is set to 1. This is because
routing between capsules iterates t − 1 times to compute the
t-th capsule Ct.

When it comes to the architecture of SRF, capsulation
blocks consisting of convolutional layers convert an input
speech sequence x′ ∈ RT ′×F ′

into a primary capsule group
C0. This capsule group consists of an activation group A0 ∈

RT×PH and a corresponding instantiation parameter group
U0 ∈ RT×PH×PD . In each layer l, Cl is sliced by the win-
dow size and encoded into Cl+1. ωL and ωR indicate the size
of the window on the left (past) and right (future) sides, respec-
tively. To encode the current time frame, L×ωR future capsules
on C0 are required. Wij is shared across all window slices. In
this research, we set the stride to 1 to ensure that the sequence
length T is the same for both C0 and CL.

Sequential dynamic routing (SDR) [16] is a routing algo-
rithm where SRF is applied to DR [10]. A key distinction be-
tween SDR and DR is that the first expectation step of SDR is
performed by computing rij as a dot product of the previous
time output vector ot−1

j and the current time prediction vector
ût
j|i. SDR models with balanced window settings (ωR = ωL)

have demonstrated higher accuracy than those with unbalanced
window settings.

3. Gated sequential routing
3.1. Applying attention gates to sequential routing

Figure 1: A schematic of a gated sequential routing mechanism.

The gate mechanism is applied to a sequential routing al-
gorithm, as depicted in Figure 1. As in the original sequential
routing algorithm, Ct−1

l and Ct
l−1 are input into the l-th capsule

layer to perform the first expectation step. In addition, Ct−1
l is

combined with the current routing outputs using a gate mech-
anism to compute Ct

l . We implemented the gate mechanism
using regular MHA to filter information from previous routing
outputs. In this mechanism, Ct−1

l is used as a key and value,
and a candidate current time capsule C̃t

l is used as a query to as-
sign a higher attention probability to Ct−1

l which has a stronger
relationship with C̃t

l . To avoid redundant normalization, Ct−1
l

is compared to C̃t
l rather than Ct

l . Finally, Ct
l is calculated by

normalizing the summation of an MHA output and C̃t
l for At

l to
have valid probabilities.

3.2. Gated sequential dynamic routing

The attention-based gate mechanism can be applied to SDR as
explained in Algorithm 1. In addition to inputs for the original
SDR algorithm, the number of attention heads H is input into
a gated sequential dynamic routing (GSDR) as a new hyper-
parameter in line 1. The distinctive procedure of an attention
gate mechanism is described in lines 9–21. As in line 9, the
mechanism is applied at the last routing iteration. A concate-
nated attention head ĥ is then declared as an empty vector in

875

Algorithm 1 Gated Sequential Dynamic Routing (GSDR) (line
7, expectation step; line 9, maximization step)

1: procedure GSDR(ot−1, ût
j|i,Λ, l,H)

2: for all i on level l and j on level (l + 1): rij ← 0
3: for all j on level (l + 1): otj ← ot−1

j

4: for λ = 1 to Λ do
5: for all i on level l and j on level (l + 1):
6: rij ← rij + ût

j|i · otj
7: for all i on level l: ci ← softmax(ri) ▷ (2)
8: for all j on level (l + 1): sj ←

∑
i cij û

t
j|i

9: if λ is Λ then
10: ĥ← ()
11: for all j on level (l + 1) do
12: for η = 1 toH do
13: kη ← ot−1

j ×W k
η

14: vη ← ot−1
j ×W v

η

15: qη ← sj ×W q
η

16: hη ← softmax(
qη·kT

η√
|otj |

)vη ▷ (2)

17: ĥ← (ĥ, hη)
18: end for
19: sj ← sj + ĥ×WH
20: end for
21: end if
22: for all j on level (l + 1): otj ← squash(sj) ▷ (3)
23: end for
24: return ot

25: end procedure

line 10. For the η-th attention head, the three vectors with the
same dimensions that are a key kη , value vη , and query qη are
computed in lines 13, 14, and 15, respectively. Accordingly,
the three transformation matrices (i.e., W k

η , W v
η , and W q

η) are
in R|ot|×|kη|. In line 16, attention energies are computed by a
scaled dot-product operation between qη and kη and normalized
into valid probabilities using (2). Then, vη is multiplied by the
attention probabilities. The outputs of attention heads are con-
catenated with ĥ in line 17. Then sj is updated by accumulating
a projected ĥ in line 19, and the gate mechanism is completed
in line 21. The projection matrix WH is in RH|kη|×|ot|.

4. Experiments
4.1. Experimental setup

The numbers of primary and intermediate capsules were set
to 60 and 30, respectively, and the number of last capsules
was set to the vocabulary size. We set |kη| to |ot|/H in the
GSDR models such that the number of additional parameters
for the gate mechanism was the same regardless of H. We set
Λ to 1, and learnable variables were initialized with the fan-ave
method [19] using a uniform distribution with a scaling factor
of 1.0. As a regularization method, every capsule layer was fol-
lowed by dropout layers [20] at a rate of 0.2. Capsulation blocks
were constructed with two convolutional layers computed with
128 filters, followed by a linear projection layer consisting of
two neurons per primary capsule. At the top of the capsulation
block, another convolutional layer with filters twice the depth
of the primary capsules expands the dimension of the projected
vectors. Every layer in capsulation was activated with max-
out [21], composed of two piecewise linear functions with a

dropout rate of 0.2. The filter size of all convolutional layers
was 3 × 3. The first two convolutional layers had a stride of 2,
whereas the last convolutional layer had a stride of 1. We used
an Adam [22] optimizer with the learning scheduler such that:

Learning Rate = κ ·min(N−0.5
s , Ns ×N−1.5

w), (4)

where κ is a scaling factor. Ns and Nw indicates the cur-
rent step and the warming-up step, respectively. We set the
beamwidth to 100 for CTC beam search decoding. All experi-
ments were performed on NVIDIATM RTX3090.

All speech corpora consist of 16-bit mono-channel read
speech sampled at 16 kHz. The TIMIT corpus [23] consists of
6,300 utterances (training 4,620; test 1,680) recorded from 630
speakers. We used 3,696 utterances as our training set. Dialect
utterances were tagged as “SA” and excluded. A total of 400
and 192 utterances from the test set were used as our valida-
tion and test sets. The dictionary consists of 61 phonemes and
2 special symbols that denote padding and a blank. We used
39 labels [24] mapped from the phoneme labels for phoneme
error rate (PER) evaluations. For the Wall Street Journal (WSJ)
corpus [25, 26], we used the si284 data set containing 81 hours
of training speech corpus (37,416 utterances) and used dev-93
(503 utterances, 1.1 hours) and eval-92 (333 utterances, 0.7
hours) for validation and evaluation, respectively. Transcription
text consists of 32 labels, including letters of the English alpha-
bet and 6 special symbols for padding, spacing, end-of-sentence
(EOS), apostrophe, blank, and noise tagging. We extracted 40-
dimensional filterbanks and their energies from the speech sig-
nals by setting hop and window size to 10 and 20 ms, respec-
tively. The velocity and acceleration were appended by setting
delta-window to 2, i.e., F ′ was set to 123. We normalized the
speech features per speaker to have a zero mean and unit vari-
ance. The speech corpus pre-processing (i.e., data splitting and
feature extraction) was performed using Kaldi1 [27]. We used a
version 2.5 of Tensorflow2 [28] to implement and evaluate our
models.

4.2. Results

In this section, we compare the proposed method with our im-
plementation of the SDR models that exhibited the best accu-
racy in [16]. For evaluations on the TIMIT corpus [23], we set
L to 7 and capsule depth to 8 for the models to have approxi-
mately 1.9 million parameters. This number of parameters in-
creased by approximately 2,000 when the proposed gate mech-
anism was applied. Approximately 5,340 frames were batched
for a training step. We first set κ = 0.2 and Nw = 1200 then
reduced the κ to 0.05 at about a step 40,000 according to the
CTC loss on Valid. Accordingly the learning rate was increased
up to 0.0057 then decreased to 0.0002. We trained the models
for a total of 41,800 steps on a graphics processing unit (GPU).
Training the existing SDR and the GSDR models took 10 and
22 hours, respectively. By applying the gate mechanism to
SDR, the average time required to decode Valid and Test has
increased from 92 to 115 seconds and from 57 to 73 seconds,
respectively. As observed from Table 1, PERs were increased
by reducing ωR from 1 to 0. In the unbalanced window set-
tings, the GSDR models with the ω setting “2-0” (GSDR-ω20)
have shown lower PERs for the test set compared with SDR-
ω20 for every attention head setting. We have compared the
first attention heads in the top capsule layers of GSDR-ω11-
H2 and GSDR-ω20-H2 as depicted in Figure 2. The utterance

1https://github.com/kaldi-asr/kaldi.git
2https://github.com/tensorflow/tensorflow/tree/r2.5

876

Table 1: Phoneme error rates (PERs) of sequential dynamic
routing (SDR) models depending on window (ωL, ωR) settings,
applications of the gate mechanism, and the number of attention
heads on the TIMIT corpus [23] (LA: look-ahead)

Model Head LA Delay PER(%)
frame (ms) Valid Test

SDR-ω11 — 39 405 15.7 17.5
SDR-ω20 — 11 125 17.5 19.0

GSDR-ω11 1 39 405 16.1 18.3
GSDR-ω20 1 11 125 17.5 18.9
GSDR-ω11 2 39 405 15.8 17.4
GSDR-ω20 2 11 125 16.7 18.4
GSDR-ω11 4 39 405 16.3 17.8
GSDR-ω20 4 11 125 16.8 18.8

(a) The 27th capsule group, ω11 (b) The 29th capsule group, ω20

Figure 2: The first attention maps of top layers in the GSDR
models with different settings of window widths ω. The
horizontal- and vertical-axis indicate corresponding output la-
bel indices (number of attention headsH = 2).

(ID: fdhc0-si1559) is 3.4 seconds long. A strong relationship
was observed between the output capsule of “r” (994–1,054 ms)
and all output capsules of GSDR-ω11-H2 and GSDR-ω20-H2
when the 27th (1080 ms) and 29th (1160 ms) input capsules,
respectively, were encoded. In addition, we noted the strongest
relationship between capsules representing the same label “r.”

For the WSJ corpus [25, 26], we used a training batch con-
sisting of approximately 27,980 frames. The total step was
83,200 and Nw was set to 15,000. κ was set to 0.1 first and
decreased to 0.01 at the about 73,000th step according to the
CTC loss on dev-93. Thus, the learning rate was up to 0.0008
then reduced to 3.5e-5. All SDR models in Table 2 contain ap-
proximately 21 million parameters, and their L andH were set
to 10 and 2, respectively. The increase in parameters upon ap-
plication of the gate mechanism was approximately 20,000. The
SDR and GSDR models were trained on 2 GPUs during 2.6 and
5.4 days, respectively. The average decoding times for each
test case increased by almost twice, from 243 to 457 seconds
for dev-93, and from 171 to 363 seconds for eval-92 when the
gate mechanism was applied to SDR. GSDR-ω31 showed ap-
proximately 1% lower WERs compared with SDR-ω31 for both
evaluation sets. GSDR-ω22 yielded the most accurate results in
WERs. We also evaluated models with the window setting of
ω11 to verify the recognition rates of another balanced window
setting. GSDR-ω11 has shown similar WERs compared with
SDR-ω22 at 1.76× lower delay, i.e., an algorithmic delay re-
duction from 925 to 525 ms.

Table 2: Word error rates (WERs) of sequential dynamic rout-
ing (SDR) models depending on the depth of capsules, window
(ωL, ωR) settings, and applications of the gate mechanism on
the WSJ corpus [25, 26] (LA: look-ahead)

Model Depth LA Delay WER(%)
frame (ms) dev-93 eval-92

SDR-ω22 20 91 925 21.3 16.9
SDR-ω31 20 51 525 23.3 17.9
SDR-ω11 26 51 525 24.1 18.6

GSDR-ω22 20 91 925 20.7 16.4
GSDR-ω31 20 51 525 22.2 17.6
GSDR-ω11 26 51 525 21.3 16.6

5. Discussion
The proposed method exhibits the highest accuracy when H =
2 for the TIMIT corpus. This can be attributed to a decrease
in both the variety of attention heads when H = 1, and the
dimensionality of vectors for each attention head when H =
4. A potential future research direction for GSDR may involve
investigating whether the increased delay in alignments within
the attention map of GSDR-ω20-H2 compared to GSDR-ω11-
H2 contributes to a degradation in recognition accuracy.

Although GSDR produced better performance than SDR
with the same latency settings in all cases of WSJ, it required
approximately twice the decoding time. Because this study was
conducted to reduce the delay of SDR, the optimization of de-
coding speed for MHA calculations within each frame is be-
yond its scope.We think that GSDR can be further improved
by reducing the computational burden. The recognition accu-
racy of GSDR falls far short of the state-of-the-art performances
listed on the leader board3: PER 12.9% [29] for Test of TIMIT
and WER 2.9% [30] for eval-92 of WSJ. However, we still be-
lieve that our method yielded promising recognition accuracy
as a singular structure requiring limited future inputs. Further-
more, a GSDR model can be seen as the acoustic component of
an NSR model, such as the RNN-T model [1]. Therefore, there
may be room to improve accuracy by integrating GSDR models
within NSR models.

6. Conclusions
In this study, we have introduced a new method that incorpo-
rates a gated recurrent mechanism into the CapsNet architecture
to fully utilize the past contextual information in the CapsNet-
only ASR systems. The gate mechanism was implemented to
control information flow between frame-wise adjacent capsules
via MHA. By applying the mechanism to SDR, we could re-
duce algorithmic delay in character-level speech recognition by
almost half while maintaining WERs on par with those of the
unmodified SDR algorithm.

7. Acknowledgements
The proposed attention gate mechanism is an extension of
Section 4.1.3 and 4.2.2 of “Toward streaming large vocab-
ulary continuous speech recognition based on neural net-
works” [31] which is the Ph.D. dissertation of Dr. Kyungmin
Lee (k.m.lee@samsung.com) under the supervision of Prof.
Hong-Gee Kim (hgkim@snu.ac.kr).

3https://github.com/syhw/wer are we

877

8. References
[1] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition

with deep recurrent neural networks,” in 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2013,
pp. 6645–6649.

[2] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend
and spell: A neural network for large vocabulary conversational
speech recognition,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2016, pp.
4960–4964.

[3] K. Kim*, K. Lee*, D. Gowda, J. Park, S. Kim, S. Jin, Y.-Y. Lee,
J. Yeo, D. Kim, S. Jung, J. Lee, M. Han, and C. Kim, “Attention
based on-device streaming speech recognition with large speech
corpus,” in 2019 IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU), 2019, pp. 956–963.

[4] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks,” in Proceedings of the
23rd International Conference on Machine Learning, ser. ICML
’06. New York, NY, USA: Association for Computing Machin-
ery, 2006, p. 369–376.

[5] L. Dong, S. Xu, and B. Xu, “Speech-transformer: A no-
recurrence sequence-to-sequence model for speech recognition,”
in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2018, pp. 5884–5888.

[6] Q. Zhang, H. Lu, H. Sak, A. Tripathi, E. McDermott, S. Koo, and
S. Kumar, “Transformer transducer: A streamable speech recog-
nition model with transformer encoders and rnn-t loss,” in ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020, pp. 7829–7833.

[7] E. Tsunoo, Y. Kashiwagi, T. Kumakura, and S. Watanabe, “Trans-
former asr with contextual block processing,” in 2019 IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU),
2019, pp. 427–433.

[8] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu,
W. Han, S. Wang, Z. Zhang, Y. Wu, and R. Pang, “Conformer:
Convolution-augmented Transformer for Speech Recognition,” in
Proc. Interspeech 2020, 2020, pp. 5036–5040.

[9] B. Li, A. Gulati, J. Yu, T. N. Sainath, C.-C. Chiu, A. Narayanan,
S.-Y. Chang, R. Pang, Y. He, J. Qin, W. Han, Q. Liang, Y. Zhang,
T. Strohman, and Y. Wu, “A better and faster end-to-end model for
streaming asr,” in ICASSP 2021 - 2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2021, pp. 5634–5638.

[10] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Sys-
tems 2017, 4-9 December 2017, Long Beach, CA, USA, 2017, pp.
3856–3866.

[11] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM
routing,” in 6th International Conference on Learning Represen-
tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018.

[12] T. Hahn, M. Pyeon, and G. Kim, “Self-routing capsule networks,”
in Advances in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada,
2019, pp. 7656–7665.

[13] Y.-H. H. Tsai, N. Srivastava, H. Goh, and R. Salakhutdinov, “Cap-
sules with inverted dot-product attention routing,” in International
Conference on Learning Representations, 2020.

[14] J. Bae and D. Kim, “End-to-end speech command recognition
with capsule network,” in Interspeech 2018, 19th Annual Con-
ference of the International Speech Communication Association,
Hyderabad, India, 2-6 September 2018. ISCA, 2018, pp. 776–
780.

[15] H. Jayasekara, V. Jayasundara, J. Rajasegaran, S. Jayasekara,
S. Seneviratne, and R. Rodrigo, “Timecaps: Capturing time series
data with capsule networks,” ArXiv, vol. abs/1911.11800, 2019.

[16] K. Lee, H. Joe, H. Lim, K. Kim, S. Kim, C. W. Han, and H.-
G. Kim, “Sequential routing framework: Fully capsule network-
based speech recognition,” Computer Speech and Language,
vol. 70, p. 101228, 2021.

[17] R. LaLonde and U. Bagci, “Capsules for object segmentation,”
CoRR, vol. abs/1804.04241, 2018.

[18] M. Kwabena Patrick, A. Felix Adekoya, A. Abra Mighty, and
B. Y. Edward, “Capsule networks – a survey,” J. King Saud Univ.
Comput. Inf. Sci., vol. 34, no. 1, p. 1295–1310, jan 2022.

[19] X. Glorot and Y. Bengio, “Understanding the difficulty of train-
ing deep feedforward neural networks,” in Proceedings of the
Thirteenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy,
May 13-15, 2010, ser. JMLR Proceedings, vol. 9. JMLR.org,
2010, pp. 249–256.

[20] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural net-
works from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp.
1929–1958, 2014.

[21] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. C. Courville, and
Y. Bengio, “Maxout networks,” CoRR, vol. abs/1302.4389, 2013.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” in 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015.

[23] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S.
Pallett, N. L. Dahlgren, and V. Zue, “Darpa timit acoustic
phonetic continuous speech corpus cdrom,” 1993. [Online].
Available: https://catalog.ldc.upenn.edu/LDC93s1

[24] K. Lee and H. Hon, “Speaker-independent phone recognition us-
ing hidden markov models,” IEEE Trans. Acoust. Speech Signal
Process., vol. 37, no. 11, pp. 1641–1648, 1989.

[25] J. S. Garofolo, D. Graff, D. Paul, and D. Pallett, “Csr-i (wsj0)
complete,” 1993. [Online]. Available: https://catalog.ldc.upenn.
edu/LDC93S6A

[26] L. D. Consortium and N. M. I. Group, “Csr-ii (wsj1)
complete,” 1994. [Online]. Available: https://catalog.ldc.upenn.
edu/LDC94S13A

[27] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recog-
nition toolkit,” in IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Processing So-
ciety, Dec. 2011, iEEE Catalog No.: CFP11SRW-USB.

[28] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat,
I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,
F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning
on heterogeneous systems,” 2015, software available from
tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[29] S. Nayak, C. S. Kumar, and K. S. R. Murty, “Instantaneous fre-
quency filter-bank features for low resource speech recognition
using deep recurrent architectures,” in 2021 National Conference
on Communications (NCC), 2021, pp. 1–6.

[30] H. Hadian, H. Sameti, D. Povey, and S. Khudanpur, “End-to-end
speech recognition using lattice-free MMI,” in Proc. Interspeech
2018, 2018, pp. 12–16.

[31] K. Lee, “Toward streaming large vocabulary continuous speech
recognition based on neural networks,” Ph.D. dissertation, Seoul
National University, 2022.

878

