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Abstract
Recently, score-based generative models have been successfully
employed for the task of speech enhancement. A stochastic dif-
ferential equation is used to model the iterative forward pro-
cess, where at each step environmental noise and white Gaus-
sian noise are added to the clean speech signal. While in limit
the mean of the forward process ends at the noisy mixture, in
practice it stops earlier and thus only at an approximation of the
noisy mixture. This results in a discrepancy between the ter-
minating distribution of the forward process and the prior used
for solving the reverse process at inference. In this paper, we
address this discrepancy and propose a forward process based
on a Brownian bridge. We show that such a process leads to a
reduction of the mismatch compared to previous diffusion pro-
cesses. More importantly, we show that our approach improves
in objective metrics over the baseline process with only half of
the iteration steps and having one hyperparameter less to tune.
Index Terms: speech enhancement, diffusion models, stochas-
tic differential equations, Brownian bridge.

1. Introduction
Speech enhancement aims to recover the clean speech sig-
nal from a noisy mixture that is corrupted by environmental
noise [1]. Classical approaches try to exploit statistical relations
of the clean speech signal and the environmental noise [2]. Nu-
merous machine learning methods have been proposed that treat
speech enhancement as a discriminative learning task [3, 4].

Different from discriminative approaches that learn a di-
rect mapping from noisy to clean speech, generative approaches
learn a prior distribution over clean speech data. Recently,
so-called score-based generative models (or diffusion models)
were introduced to the task of speech enhancement [5–9]. The
idea is to iteratively add Gaussian noise to the data using a dis-
crete and fixed Markov chain called forward process, thereby
transforming data into a tractable distribution such as a nor-
mal distribution. Then, a neural network is trained to invert
this diffusion process in a so-called reverse process [10]. When
the step size between two discrete Markov chain states is taken
to zero, the discrete Markov chain becomes a continuous-time
stochastic differential equation (SDE) under mild constraints.
Utilizing SDEs offers more flexibility and opportunities than
approaches based on discrete Markov chains [11]. For example,
SDEs allow to use general-purpose SDE solvers to numerically
integrate the reverse process, impacting the performance and
number of iteration steps. An SDE can be interpreted as a trans-
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formation between two given distributions, where one is called
the initial distribution and the other the terminating distribution.
In the case of speech enhancement, we transform between the
distribution of clean speech data and the distribution of noisy
mixture data. Under mild constraints, we can find for each for-
ward SDE a reverse SDE inverting the forward SDE [12, 13].
This reverse SDE starts from a noisy mixture and ends at the
clean speech. It can be therefore used for speech enhancement.

Currently, for the task of speech enhancement, there are dif-
ferent approaches that integrate the corruption of environmental
noise in the diffusion process [6–8]. To compensate for non-
Gaussian noise characteristics, these approaches use an interpo-
lation between clean speech and noisy speech data along the for-
ward process. In [7,8] a continuous-time SDE is used, which in-
cludes a drift term that allows the transformation between clean
and noisy speech. Interestingly, the mean of the process in [7,8]
evolves from clean speech perfectly to noisy speech only for
an infinitely long forward diffusion process. In practice, how-
ever, the mean of the forward process ends at an approximation
of the noisy speech data. Therefore, when solving the reverse
SDE to perform speech enhancement, there exists a mismatch
between the terminating distribution of the forward process and
the initial distribution of the reverse process [8]. We call the
initial distribution of the reverse process the prior distribution
of the generative model and the corresponding mismatch the
prior mismatch. Moreover, the SDEs in [7, 8, 14, 15] includes
a stiffness parameter controlling the pull of the terminating dis-
tribution of the forward process and the prior distribution. Con-
sequently, this stiffness parameter determines the degree of the
resulting prior mismatch. Increasing the stiffness reduces the
prior mismatch, but may also negatively affect the speech en-
hancement performance as the reverse process may become un-
stable [8, Section II D].

To overcome this limitation, we seek to reduce the prior
mismatch without destabilizing the reverse process. To this end,
we propose to replace the forward process in [7,8] with an SDE
based on a Brownian bridge process. A Brownian bridge seems
suitable for this purpose because it has fixed starting and end
points and follows a Brownian motion in between. We show
that the resulting diffusion process does not only drastically
decrease the prior mismatch, but also eliminates the dataset-
dependent and hard-to-tune stiffness parameter of the SDE in
[7, 8]. In the experiments, we demonstrate that using the pro-
posed SDE outperforms the baseline SDE while having one hy-
perparameter less to tune and using only half as many function
evaluations 1.
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2. Background

The task of speech enhancement is to estimate the clean speech
signal S from a noisy mixture Y = S+N, where N is environ-
mental noise. All variables in bold are the coefficients of a com-
plex valued short-time Fourier transform (STFT), e.g. Y ∈ Cd

and d = KF with K number of STFT frames and F number
of frequency bins.

2.1. Stochastic Differential Equations

Following the approach in [7, 8], we model the forward process
of the score-based generative model with an SDE defined on
0 ≤ t < Tmax:

dXt = f(Xt,Y)dt+ g(t)dw, (1)

where w is the standard Wiener process [16], Xt is the current
process state with initial condition X0 = S, and t a continu-
ous diffusion time-step variable describing the progress of the
process ending at the last diffusion time-step Tmax. Moreover,
f(Xt,Y)dt can be integrated by Lebesgue integration [17], and
g(t)dw follows Ito integration [16]. The functions f(Xt,Y)
and g(t) are called drift and diffusion coefficient, respectively.
The diffusion coefficient g regulates the amount of Gaussian
noise that is added to the process, and the drift f affects mainly
in the case of linear SDEs the mean of Xt (see [16, (6.10)]).
The process state Xt follows a Gaussian distribution [18, Ch.
5], called the perturbation kernel:

p0t(Xt|X0,Y) = NC
(
Xt;µ(X0,Y, t), σ(t)2I

)
. (2)

By Anderson [12], each forward SDE as in (1) can be associated
to a reverse SDE:

dXt =
[
−f(Xt,Y) + g(t)2∇Xt log pt(Xt|Y)

]
dt+g(t)dw̄ ,

(3)
where dw̄ is a Wiener process going backwards in time. In
particular, the reverse process starts at t = T and ends at t = 0.
Here T < Tmax is a parameter that needs to be set for practical
reasons as the last diffusion time-step Tmax is only reached in
limit. The score function ∇Xt log pt(Xt|Y) is approximated
by a neural network called score model sθ(Xt,Y, t), which is
parameterized by a set of parameters θ. Assuming that sθ is
available, we can generate an estimate of the clean speech X0

from Y by solving the reverse SDE.

The prior mismatch discussed in this paper is defined by
the difference of µ(X0,Y, T ) to Y. In this work and previous
work [7, 8], we consider only SDEs where the mean is of the
form

µ(X0,Y, t) = (1− k(t))X0 + k(t)Y , (4)

where 0 ≤ k(t) < 1 is an increasing function. In the sequel,
we will simply write µ(t) for brevity. The mismatch of such
an SDE is determined by k(T ) and we call k(T ) the maximal
interpolation factor (MIF) for the rest of the paper. It is desired
that the MIF k(T ) is close to 1 and we will see in the following
sections to which degree this goal is met.

3. Design choices of different SDEs
3.1. Ornstein-Uhlenbeck with Variance Exploding (OUVE)

In [7,8] an SDE is used with the drift coefficient f(Xt,Y) and
diffusion coefficient g(t) defined as

f(Xt,Y) = γ(Y −Xt), (5)

g(t) = σmin

(
σmax

σmin

)t
√

2 log

(
σmax

σmin

)
, (6)

for 0 ≤ t ≤ T < Tmax = ∞ and parameters γ, σmin, σmax ∈
R+. Such a drift term is typical for an Ornstein-Uhlenbeck
process [16], whereas the diffusion coefficient is taken from
the so-called Variance Exploding SDE [11]. Thus, we call
the baseline SDE Ornstein-Uhlenbeck with Variance Exploding
(OUVE). A reparameterization of (6) with σmax := kσmin and
c := σ2

min2 log(
σmax
σmin

) yields

g(t) =
√
ckt, where c, k > 0. (7)

We argue that this equivalent representation of the diffusion co-
efficient may increase the intuition of (6), as

√
c simply scales

the diffusion coefficient and k is the base of the exponential
term. We will simply use the parameterization of Eq. (7) for the
rest of this work.

The closed-form solution for the mean and variance of the
perturbation kernel of this SDE are given by:

σ(t)2 =
c
(
k2t − e−2γt

)

2(γ + log(k))
, (8)

and
µ(t) = e−γtX0 + (1− e−γt)Y . (9)

We see from (9) that for large t → ∞, we have that Xt has
mean Y. However, as in practice we need to decide for a fi-
nite final diffusion time-step T , a certain difference between
the mean of XT and Y remains. If we parameterize the OUVE
SDE as in [8], i.e. γ = 1.5 and T = 1, then we find that the
MIF is k(T ) = (1 − e−1.5) = 0.78. As it is desired to have
a MIF close to 1, we argue that the difference between µ(T )
and Y is relatively large. Note that increasing T for fixed γ
to obtain a better MIF is equivalent to fixing T and increasing
γ. Moreover, we have that increasing γ, yields a better MIF,
but also worsens the performance of this approach, as the sam-
pling from the reserve SDE becomes unstable [8, Section II D].
Therefore, increasing the MIF k(T ) = 1 − e−γT for this SDE
is not straightforward.

3.2. Brownian Bridge with Exponential Diffusion Coeffi-
cient (BBED)

In order to reduce the prior mismatch, we propose to employ
an SDE that has a linear interpolation factor k(t) = t, where
0 ≤ t ≤ T < Tmax = 1. Substituting k(t) = t the mean of the
SDE in (4) becomes

µ(t) = (1− t)X0 + tY . (10)

One can find an SDE with the following drift coefficient that
has the desired mean from (10) by solving [16, (6.12)]

f(Xt,Y) =
Y −Xt

1− t
. (11)

Comparing (10) and (4), we see that the MIF is k(T ) = T .
Note, that the choice of T < 1 is limited due to numerical

3810



0.0 0.2 0.4 0.6 0.8 1.0
Diffusion time-step t

0.3

0.15

V
ar

ia
nc

e

BBED: k = 2.6, c = 0.51
BBED: k = 5, c = 0.12

OUVE: k = 10, c = 0.01, γ = 1.5

Figure 1: Variance evolution of BBED and OUVE. Solid curves
are variances for BBED with different parameterizations. The
dotted curve is the variance of the OUVE with parameterization
as in Section 4.4.
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Figure 2: Black and blue curves are the averaged ∆SNR(µ(t))
as defined in (15) of the mean evolutions of BBED and OUVE
for the WSJ0-CHiME3 test set. The dotted yellow line is the
SNR of Y. The OUVE SDE is parameterized with γ = 1.5 as
described in Section 4.4.

stability as we divide by (1 − t) in (11). However, it is still
possible to achieve a much better MIF compared to the MIF of
the OUVE SDE, as we will see in Section 5.2.

For a fair comparison to the OUVE SDE, we want to utilize
the same diffusion coefficient as from the OUVE SDE in Eq.
(7). The resulting variance can be computed from [16, (6.11)]:

σ(t)2 = (1− t)c
[
(k2t − 1 + t) + log(k2k2

)(1− t)E
]
, (12)

E = Ei [2(t− 1) log(k)]− Ei [−2 log(k)] , (13)

where Ei[·] denotes the exponential integral function [19]. The
variance trajectory exhibits one peak and vanishes for t = 0
and t = 1. The position of the peak is solely determined by k,
where larger k shifts the peak closer to t = 1.

In the literature, SDEs that linearly transform the starting
condition (X0 = S and zero variance for t = 0) to the ter-
minal condition (XT = Y and zero variance for t = 1) with
a constant diffusion coefficient of g(t) = 1 are called Brow-
nian bridges [16]. As the SDE with drift coefficient (11) and
diffusion coefficient (7) differs from that definition only in the
diffusion coefficient, we call the SDE a Brownian Bridge with
Exponential Diffusion coefficient (BBED).

4. Experimental setup
To allow a fair comparison between BBED SDE with OUVE
SDE, we train the corresponding score models with the same
configuration and follow the experimental setup from [8, Sec-
tion V].

4.1. Training

For the score model sθ(Xt,Y, t), we employ the Noise Con-
ditional Score Network (NCSN++) architecture (see [8, 11] for
more details). The network is optimized based on denoising
score matching:

argmin
θ

Et,(X0,Y),Z,Xt|(X0,Y)

[∥∥∥∥sθ(Xt,Y, t) +
Z

σ(t)

∥∥∥∥
2

2

]
,

(14)
where Xt = µ(t) + σ(t)Z with Z ∼ NC(0, I). We train the
network with the ADAM optimizer [20] with a learning rate of
10−4 and a batch size of 16. An exponential moving average
of network parameters is tracked with a decay of 0.999, to be
used for sampling [7, 11]. We train for 250 epochs and log the
averaged PESQ value of 10 random files from the validation set
during training and select the best-performing model for eval-
uation. Experiments are conducted on an NVIDIA A6000 and
training lasts for approximately 4 days.

4.2. Dataset and input representation

We use the same WSJ0-CHiME3 dataset as in [8]. This dataset
mixes clean speech utterances from the Wall Street Journal
(WSJ0) dataset [21] to noise signals from the CHiME3 dataset
[22] with an uniformly sampled signal-to-noise ratio (SNR) be-
tween 0 and 20 dB. The dataset is split into a train (12777 files),
validation (1206 files) and test set (615 files).

Each file from the WSJ0-CHiME3 dataset is converted into
a complex STFT representation with a window size of 510, re-
sulting in 256 frequency bins, a hop size of 128 and a periodic
Hann window. We randomly crop the STFT representation to a
length of 256 frames at each training step. To compensate for
the typically heavy-tailed distribution of STFT speech magni-
tudes [23], as in [8], each complex coefficient c of the STFT
representation is transformed via β|c|αei∠(c) with β = 0.15
and α = 0.5.

4.3. Sampling and metrics

For the baseline OUVE SDE and the proposed BBED SDE we
use the same sampler settings for a fair comparison. We use
a Predictor-Corrector scheme as in [8, 11], where the Predictor
is the Euler-Maruyama method [18] and the Corrector is the
Annealed Langevin Dynamics (ALD) method [11]. As in [8],
the step size for ALD is chosen as 0.5 and the number of reverse
steps is 30. Equivalently, the step size in the reverse process is
h = T/30, where T is set for the OUVE SDE and BBED SDE
individually (see Section 4.4). For the reverse process, we set
the reverse starting time at trs = T . We also report results when
experimenting with the reverse starting times trs < T in Section
5.3 while keeping the step size h = T/30 fixed.

We evaluate the performance on perceptual metrics, wide-
band PESQ [24] and POLQA [25], on energy-based metrics SI-
SDR, SI-SIR and SI-SAR [26] and on intelligibility metric ES-
TOI [27].

4.4. OUVE and BBED

As in [8], the parameters T , σmin, σmax and θ were already tuned
by a grid search. Therefore, we set as in [8] T = 1 and γ =
1.5, and the diffusion coefficient parameters in Eq. 6 are set to
σmin = 0.05 and σmax = 0.5, or in the equivalent representation
in Eq. 7, we set k = 10 and c = 0.01.

For the BBED SDE, we search for the largest T
in {0.9, 0.99, 0.999, 0.9999} so that training and inference
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Table 1: Speech enhancement results (average and standard deviation over the test set) obtained for WSJ0-CHiME3. The OUVE SDE
is parameterized as described in 4.4 and the BBED SDE is parameterized with k = 2.6, c = 0.51. trs denotes the reverse starting time
as defined in Section 4.3.

SDE POLQA PESQ ESTOI SI-SDR [dB] SI-SIR [dB] SI-SAR [dB]
Mixture 2.63± 0.67 1.70± 0.49 0.78± 0.14 10.0± 5.7 10.0± 5.7 -

Baseline OUVE [8] 3.71± 0.51 2.92± 0.53 0.92± 0.05 17.78± 4.57 31.51± 4.9 18.00± 4.65
BBED trs = 0.5 3.97± 0.48 3.05± 0.53 0.93± 0.05 18.96± 4.28 31.42± 5.19 19.28± 4.36

BBED trs = 0.999 4.01± 0.49 3.08± 0.57 0.94± 0.05 19.26± 4.43 31.64± 5.08 19.59± 4.53

is numerically stable. The parameter k in (7) is de-
termined as the empirically optimal choice of K :=
{0.02, 0.2, 0.6, 1.1, 1.5, 2.6, 5, 27}. The values of the grid have
been chosen in such a way that the resulting variances have their
peaks ranging from 0.2 to 0.9. For example, the resulting vari-
ance for k = 5 has its maximum at 0.8, the variance for k = 2.6
has its maximum at 0.7, etc. For each k ∈ K, we set the nor-
malization factor c so that the variances admit a maximum value
of either 0.15 or 0.3. This choice is based on the OUVE SDE
parameterization also having a maximum value of 0.15. Ex-
emplary, we plot two parameterizations of the variance of the
BBED SDE in Fig. 1.

5. Results
First, we present the results when parameterizing the BBED
SDE as described in Section 4.4. Second, we discuss if the pro-
posed BBED SDE reduces the prior mismatch compared to the
baseline OUVE SDE. Last, we discuss the performance differ-
ences in terms of objective metrics, number of iterations in the
reverse process and subjective differences of the OUVE SDE
and BBED SDE.

5.1. Parameterization of the BBED SDE

When training and testing the score-model with the BBED SDE
with different k ∈ K, we argue that it is beneficial to have the
variance maximum towards the end of the forward process, as
the Gaussian noise would better mask the speech features cor-
rupted by the environmental noise. At the same, if the variance
maximum is too close to the end of the forward process, which
is at t = 1, then the diffusion coefficient becomes numerically
large and consequently the reverse process may become unsta-
ble. Empirically, we found that k = 2.6 with maximum vari-
ance 0.3 results in the best performance (see Fig. 1 black line).
When training and testing the score-model with the BBED SDE
with different T ∈ {0.9, 0.99, 0.999, 0.9999}, we found that
T = 0.999 is the largest value that causes no numerical issues.

5.2. Reducing the prior mismatch

As we set for the BBED SDE T = 0.999, we have that the MIF
is k(T ) = 0.999. This is much closer to 1 than the MIF of
0.78 achieved by the OUVE SDE as discussed in Section 3.1.
We illustrate this prior mismatch in terms for SNR in Fig. 2.
To this end, let y′ and s be time-domain signals, where s is the
clean speech signal and y′ is any clean speech signal corrupted
with environmental noise. We define the SNR(Y′, S) to be
20 log10

||s||2
||y′−s||2 , || · ||2 denotes the ℓ2 norm. In Fig. 2, we

averaged

∆SNR(µ(t)) := SNR(µ(t),S)− SNR(Y,S) (15)

for the BBED SDE and OUVE SDE over the WSJ0-CHiME3
test set. We have that SNR(µ(t),S) approaches SNR(Y,S)

if µ(t) = Y. This is the case for the BBED SDE as it can
be observed in Fig. 2. In comparison, we find that the OUVE
SDE differs to the SNR(Y,S) by 3.6 dB at t = 1 in Fig. 2,
showing that the BBED SDE indeed reduces the prior mismatch
compared to the OUVE SDE.

5.3. OUVE vs. BBED

In Tab. 1 we show that BBED outperforms OUVE in all re-
ported metrics. When listening to enhanced files generated by
BBED and OUVE, we observe that the enhanced files generated
by BBED contain less background noise and breathing artifacts
than the enhanced files generated by OUVE. We provide some
listening examples in the supplementary material2.

Remarkably, when experimenting with trs we found that
the BBED SDE largely maintains performance when changing
trs = T = 0.999 to trs = 0.5 as it can be seen in Tab. 1. This is
in contrast to OUVE SDE which loses 0.31 in PESQ when we
set trs = 0.5. Since we keep the reverse step size h = T/30
fixed when starting inference at trs = 0.5, the number of iter-
ations is halved with only negligible performance loss for the
BBED SDE as compared to when starting the reverse process
at trs = 0.999. In particular BBED even outperforms OUVE
when only using half as many iterations for enhancement.

The proposed BBED SDE has a different drift coefficient
compared to the OUVE SD (compare Eq. (11) and Eq. (5)),
which results in different mean evolutions (see Fig. 2) and dif-
ferent variance evolutions (see Fig. 1). Thus, there could be
various reasons why the BBED SDE outperforms the OUVE
SDE. We hypothesize that a much higher variance of the BBED
could be mainly responsible for the improvements, as a higher
variance potentially helps to generate better speech estimates.
We also believe that too large values for the diffusion coeffi-
cient g(t) may lead to numerical instability of the reverse pro-
cess. We leave this discussion for future work.

6. Conclusions
In this paper, we aimed to minimize the prior mismatch in score-
based generative modeling for speech enhancement. To this
end, we constructed the BBED SDE that is inspired by Brow-
nian bridges. The BBED SDE yields a much smaller prior
mismatch compared to the baseline OUVE SDE and has one
hyperparameter less to tune. As a result, we consistently im-
prove in all reported metrics over the OUVE SDE. Moreover,
the BBED SDE achieves improvements of 0.13 in PESQ and
0.26 in POLQA even when only using half as many function
evaluations as the OUVE SDE.

2https://www.inf.uni-hamburg.de/en/inst/ab/
sp/publications/sgmse-bbed
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