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Abstract
Audio privacy has been undertaken using adversarial task train-
ing or adversarial models based on GANs, where the models
also suppress scoring of other attributes (e.g., emotion, etc.), but
embeddings still retain enough information to bypass speaker
privacy. We use methods for feature importance from the ex-
plainability literature to modify embeddings from adversarial
task training, providing a simple and accurate approach to gen-
erating embeddings for preserving speaker privacy while not
attenuating utility for related tasks (e.g., emotion recognition).
This enables better adherence with privacy regulations around
biometrics and voiceprints, while retaining the usefulness of
audio representation learning.
Index Terms: adversarial training, speaker identification, emo-
tion scoring, feature shuffling

1. Introduction
Audio (in particular speech) is now an important modality in
multimodal machine learning (ML), [1, 2]. Representation learn-
ing is a first step, i.e., converting the data of any modality into
“embeddings”—fixed size tensors—that are then pipelined into
downstream supervised or unsupervised learning models, [3] is
an early example.

We introduce a new methodology to generate speech embed-
dings that are privacy cognizant, i.e., they are optimized for a
speech classification task (e.g., emotion scoring, arousal detec-
tion, task identification, etc.), while sharply attenuating speaker
identification. The approach appears to be simple—fit a seq2seq
model [4] using gated recurrence units (GRUs) that emits em-
beddings using a scheme optimized for emotion scoring and
penalized for speaker identification—known as adversarial task
training as in [5]. But, we show that this approach does not work
as intended, and we propose a method to modify speech embed-
dings such that they are not usable for speaker identification but
remain viable for emotion scoring.

Speech processing presents specific and interesting privacy
considerations around biometric data. Biometric information
includes retina or iris scans, fingerprints, voiceprints, hand scans,
facial geometry, DNA, and other unique biological information.
Privacy preserving embeddings produced using the methods in
this paper are practical, especially when the intended use case
does not call for speaker identification.

We focus on a single speech analysis task, i.e., emotion
scoring (analogous to detecting sentiment from text), though the
methodology applies to all utility tasks. Speech may be classified
into common emotions such as anger, disgust, fear, happiness/joy,
sad, and neutral, etc., see [6], which also studies detection of
emotion level into low, medium, high, and unspecified. Other
models detect valence and arousal [7].

There are various approaches to suppression of speech at-
tributes such as gender, speaker, emotion, intention, etc., [5].
Voice conversion, which entails changing the voice of the speaker
to another is widely used [8, 9, 10, 11]. Voice morphing, which
alters speech attributes such as pitch and intensity, is also of-
ten applied. These methods, while highly effective for speaker
masking, also end up masking sensitive emotional states of the
speaker, which is not the intention in this paper, which differs
from this literature as follows: (i) Instead of masking the emo-
tional state and identity of the speakers, we wish to identify the
emotion yet suppress speaker identification. Hence, we do not
wish to hide all attributes of audio in representations from an ad-
versary as in [12], i.e., we wish to preserve “utility” of the audio
dataset (see [13] for an example on tabular data using GANs;
[14], [15] for examples on images). (ii) We do not aim to modify
the original audio, as in [8], or style transfer applications [11, 9],
but specifically the embeddings generated from the audio that
may be used for speaker identification, in order to better comply
with biometric laws. (iii) Rather than using GANs to generate
synthetic audio, as in [16], we directly modify the embeddings
by shuffling components using feature importance techniques,
an approach that is simple and effective in terms of generating
embeddings that sharply attenuate speaker identification while
only marginally impacting emotion detection.

The rest of the paper proceeds as follows. In Section 2
we review adversarial speech embeddings. Section 3 discusses
the data used in this study. Section 4 presents an analysis and
disadvantages of using adversarial embeddings. Section 5 intro-
duces the new embedding shuffling method and its efficacy, and
concluding comments are offered in Section 6.

2. Adversarial Audio Embeddings
The adversarial task training approach generates embeddings
designed to attenuate speaker identification through an objective
function (L) that equals the difference between accuracy on the
emotion classification task and on the speaker identification task:

L = (wemo · Lemo)− (wspk · Lspk) (1)

Here, Lemo (Lspk) is the cross-entropy loss on the emotion de-
tection (speaker identification) tasks, respectively, with weights
wemo, wspk ≥ 0, where each weight is 1/(− log(1/nj)),
j = {emo, spk}, and nj is the number of classes in j.

A sequence-to-sequence model is used to generate the em-
beddings, which will vary depending on the relative values of
wemo and wspk. This model is diagrammed in Figure 1. In
related work, [15, 16] build a model based on GANs to sup-
press specific sensitive attributes in speech data. A similar ap-
proach may also be taken to induce fairness in representations,
as is done with GANs, usually applying min-max methods as
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in [12, 13, 17]. Our paper (i) shows that these embeddings do
not suppress speaker identification, and (ii) introduces a novel
technique to modify these embeddings to suppress speaker iden-
tification while supporting other utility tasks. For parsimony, we
focus on the emotion detection task, because this is the one that
is often suppressed in the literature.

Figure 1: Emotion classification with discouraged speaker iden-
tification. Embeddings from the seq2seq model are passed into
task identification layers for both emotion classification and
speaker identification and entered into the composite loss func-
tion in equation 1.

3. Data
We use three datasets for assessment of our approach. First, we
use the CREMA-D dataset1 that is labeled for emotion scoring.
The data set contains 7,442 speech files from 91 actors (48 male,
43 female, ages 20–74), in both, WAV and MP3 formats. The
actors have varied races and ethnicities (African America, Asian,
Caucasian, Hispanic, and Unspecified). Emotions fall into six
categories: anger, disgust, fear, happy, neutral and sad. Speech is
recorded on 12 sample sentences that were spoken by the actors.
Evaluators rate the speech samples and 95% of the files have
more than 7 ratings. Since the dataset contains both, emotion
and speaker labels, it satisfies the requirement for the specific
loss function used in this paper.

Second, the Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) dataset [18]. The dataset of 1440
speech samples is constructed from 24 professional actors (equal
female/male), speaking two lexically-matched statements in a
neutral North American accent. Labels are: calm, happy, sad,
angry, fearful, surprise, and disgust. It has both speech and song,
and we only use the speech data, for which there are 22 speakers.
The main results are shown on these two widely known datasets.

Third, for robustness we assess the methodology on the au-
dio of quarterly corporate earnings conference calls (ECs). We
collected 130 earnings calls audio from six major tech compa-
nies: Apple, Amazon, Google, Meta, Microsoft, Netflix, for the
period 2019 Q1 through 2022 Q2. We used Amazon Transcribe
to diarize the audio and extract the audio for every spoken sen-
tence separately along with the speaker ID, resulting in 46274
sentences across 608 unique earnings call and speaker combina-
tions. We pruned speakers with less than 20 utterances, to make
speaker identification easier and make it harder for the new ap-
proach to work. Unlike the first two datasets, which are labeled
for both emotion and speaker ID, the dataset of ECs does not
have emotion labels. However, the purpose of our experiments
is to suppress speaker identification, a goal that is not impacted
if we have synthetic emotion labels. We create emotion scores
using the text transcripts of these earnings calls, using well-

1https://github.com/CheyneyComputerScience/CREMA-D

established sentiment scoring NLP algorithms. A set of emotion
labels is generated using text polarity as a proxy for emotion,
scored using an algorithm in Amazon SageMaker [19].2 The
polarity score assigned to each sentence ranges from −1 to +1,
with several sentence scores at exactly zero, since there may be
no positive or negative words in the sentence. Hence, we reduce
polarity to three ordinal categories, {-1,0,+1}, using the sign of
polarity to establish the label.3

4. Embeddings Analysis
4.1. Embeddings Architecture

As shown in Figure 1, (a) the end-to-end framework consists of
a feature extractor, a sequence to sequence model, an emotion
classifier and a speaker identifier. Inspired by Chung and Zis-
serman [20], a 6 layer convolutional network is used to extract
512 dimension feature embeddings. The output from the feature
extractor is fed into the seq-to-seq model (Figure 1). (b) For
CREMA-D, the sequence to sequence model uses a unidirec-
tional GRU [21]. A 2 layer GRU is used with a 512-dimensional
hidden state. Furthermore, fixed length snippets are sampled
from the entire audio to create a fixed length sequence. A snippet
size of 0.5 seconds is used to create a sequence of 3 snippets.
A dropout of 0.5 is used during training. The hyperparameters
for RAVDESS are the same as those of CREMA-D except the
number of layers of the GRU and the snippet size are 3 and 1.2
seconds, respectively. The output of the final unrolling of the
seq-to-seq model is used to produce the 512 dimensional embed-
dings that are fed to the classifier. (c) The emotion classifier is
a 4 layer feed forward network with the speaker identifier also
being a 4 layer feed forward network.

4.2. Adversarial Training Efficacy

We train seq2seq embeddings in different ways. (i) For emotion
detection while suppressing speaker identification, i.e., wemo >
0, wspk > 0 (adversarial). (ii) Embeddings from the emotion
identification task only (non-adversarial). The last row in Table
1 demonstrates that adversarial training works well as noted in
[5]. We drop speaker identification accuracy to close to zero,
while maintaining accuracy for emotion scoring. These results
are visually corroborated in Figure 2, where emotions cluster
cleanly based on the embeddings but speakers do not, for both
types of embeddings. The emotion-only embeddings (second
row) obviously do better. In fact, when adversarial speaker
suppression is implemented (top plots in Figure 2), there is
evidence of some speaker identification versus when no speaker
suppression is undertaken (lower plots). Therefore, adversarial
training does not eliminate speaker identification information
from the embeddings, as described in the next subsection.

4.3. Adversarial Training Failure

We verify similar issues (the negative result noted in [5]), i.e.,
that the embeddings still enable speaker identification when
fine-tuned separately from the pipeline in Figure 1. In order to
ascertain how well adversarial training eliminates speaker iden-
tity from the embeddings, we attempted to fit models for speaker

2For documentation on this algorithm, see https://
sagemaker-jumpstart-industry-pack.readthedocs.
io/en/latest/smjsindustry.nlp_scorer.html.

3While the first two datasets are in the public domain, the last dataset
was collected by downloading and then processed further. This data is in
the public domain and is available to anyone for reconstruction.
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Table 1: Accuracy of models on the CREMA-D and RAVDESS
datasets. Train/Test splits that have overlapping speakers make
it harder to suppress speaker identification

CREMA-D RAVDESS
Accuracy (%) Accuracy (%)

Model Emo Spk Emo Spk

GRU (emotion only) 60.03 - 72.28 -
GRU (speaker id only) - 67.97 - 98.60
GRU + Diff in CE Loss 60.60 0.06 69.44 0.00

Embeddings based on emotion scoring with speaker suppression
Emotion scores Speaker IDs

Embeddings based on emotion scoring only
Emotion scores Speaker IDs

Figure 2: TSNE projection plots for differentially trained se-
quence to sequence embeddings (with overlapping speakers in
the train and test datasets) on CREMA-D. The left side plots
are colored with the emotion labels and the right side plots are
colored with speaker IDs. The top pair of images are based
on embeddings from the model trained on the loss function in
equation 1 where wemo > 0, wspk > 0. The bottom pair of
images are based on a model where only emotion detection is
trained.

identification using the 512-dimensional embedding feature vec-
tor. We used the stack-ensembled model framework in Auto-
Gluon (AG), which has very high accuracy on test datasets (it
achieves top 1% leaderboard rankings in Kaggle competitions.4)
While adversarial training does attenuate speaker identification
to some extent—from 68% to 61% on CREMA-D and 98% to
80% on RAVDESS, speaker identification accuracy is still too
high to be privacy reassuring. The reason for this is that even
though training is adversarial, information from the speaker la-
bels leaks back into the embeddings since they are still being
used for adversarial training. Therefore, we propose a simple
post-processing step on the embeddings to drastically reduce
speaker id accuracy. We denote this as “embedding shuffling”
and note that this is very general and may also be applied to
embeddings from the emotion scoring task and it does not need
embeddings from adversarial training.

4See [22], https://github.com/autogluon/autogluon

5. Embedding Shuffling
In a feature (or embedding) matrix where we stack 512-
dimensional feature (or embedding) vectors into a matrix, we
retain the ME most important feature columns (for emotion de-
tection) and shuffle the remaining columns. If ME contains any
of the top MS speaker detection features then we shuffle those
as well. We vary ME = MS ≡M = {75, 50, 25, 15, 10}, and
as M declines, we expect to see declining accuracy in both emo-
tion detection and speaker identification. If the scheme works
well, emotion detection only attenuates slightly whereas speaker
identification accuracy drops sharply. Implementation is via the
following steps:

1. Fit embeddings (we use dimension 512) to the data using
adversarial training (Figure 1).

2. Use these embeddings (a) to fit a speaker identification model
using any ML model of choice (we used XGBoost); (b) denote
as vector fS the importance-ranked feature dimensions in the
512 embedding vector using any explainability method (we
used SHAP [23], the specific version for trees based on [24]).

3. Use the embeddings from (1) to (a) fit an emotion detec-
tion model using any ML model of choice (we used AG);
(b) determine the importance-ranked feature dimensions (de-
noted as vector fE) of dimension 512 using any explainability
method. We used the column permutation method in AG—
this method works well when the labels are few (< 10 as
is the case with emotion scoring). But with speaker identi-
fication, we may have hundreds of speakers, in which case
XGBoost+treeSHAP5 works well as in (2).

4. (a) In the 512 dimensional embedding matrix, keep the top
ME features in the fE vector fixed and column permute the
rest. (b) If there are any features in the top-ranked MS features
in fS that are in the top ME features in fE , permute those as
well.

5. Refit both (i) the speaker identification and (ii) emotion de-
tection models with the shuffled embeddings using AG. The
results are shown in Figure 3.

5.1. CREMA-D dataset

Based on the procedure above, no embedding shuffling corre-
sponds to 512 fixed features. As shown in Figure 3, first plot,
the emotion scoring task has better fit (f1 score) and the speaker
suppression task delivers much lower performance, attenuating
to less than 10% of the original level, in line with that achieved
by [15] for images using GANs, and much lower (i.e., better)
than accuracy levels on audio [9] (∼ 14.2%). Hence, training on
one task and shuffling using feature importance from both tasks
offers a way of suppressing speaker identification without mate-
rial attenuation of the accuracy of emotion detection. (Similar
results obtain when the target metric is accuracy, balanced accu-
racy, or MCC.) Further, we see that better results are achieved
when using the embeddings from emotion scoring only, because
speaker id label leakage is circumvented.

5.2. RAVDESS dataset

Figure 3, second plot, shows that feature shuffling attenuates
emotion scoring by only 10% but speaker identification f1-score
drops by as much as 63%. Both emotion scoring and speaker

5https://shap.readthedocs.io/en/latest/
example_notebooks/tabular_examples/tree_based_
models/Understanding%20Tree%20SHAP%20for%
20Simple%20Models.html
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Figure 3: Suppression of speaker identification after embeddings
shuffling. We show the number of fixed (unshuffled embedding
dimensions) on the x-axis, ranging from 512 (no shuffling) to
10 (502 features shuffled). (i) EMO + SSemo (dark orange)
is F1-score for emotion detection based on adversarial training
embeddings; (ii) EMOemo (dark yellow) is for emotion detec-
tion w/o adversarial training; (iii) EMO + SSspk (dark grey)
is F1-score for speaker identification with adversarial training;
(iv) EMOspk (blue) is for speaker identification w/o adversarial
training.

identification metrics are much higher on the RAVDESS dataset
than the CREMA-D dataset, despite fewer rows of data. This
may be because the quality of the audio is better, and the number
of speakers is also far fewer (22 in RAVDESS versus 91 in
CREMA-D). The results further confirm that post-processing
with emotion task (non-adversarial) embeddings performs better
for attenuating speaker identification.

5.3. Earnings Calls dataset

Both the CREMA-D and RAVDESS datasets were specifically
prepared for emotion detection using actors. As a robustness
exercise, we introduce a third dataset that we constructed from
corporate earnings calls by extracting sentences spoken by var-
ious speakers on the calls. We label each sentence with the
speaker ID and also create synthetic text-based emotion labels,
using polarity scoring of the text in each sentence. The num-
ber of speakers in this dataset is much larger and none of the
speakers is emoting in a directed manner.

The original dataset has 46274 rows and 608 unique earn-
ings call+speaker combinations. Stratified sampling was used to
break the dataset into train and test data. Also only speakers who
had at least 20 and no more than 80 utterances were retained.
After pruning speakers, we get 9955 rows and 216 speakers, i.e.,
a large multiclass dataset. We undertake a 90:10 train:test split
and repeat the analysis in Section 5 using text-based emotion
labels. Figure 3, bottom plot, shows that our embeddings shuf-
fling approach barely reduces accuracy on the emotion detection
task, but sharply attenuates accuracy on speaker identification.
In contrast to the results on the CREMA-D and RAVDESS
datasets, where using emotion task only embeddings offers bet-
ter speaker identity suppression, the EC dataset shows the same
sharp speaker suppression for both, emotion task only embed-
dings and adversarial task training embeddings.

6. Discussion and Conclusion
We show that adversarial task training of embeddings retains
sufficient residual information to enable speaker identification,
and we find that careful post-processing using embedding shuf-
fling on important features cures this deficiency. We achieve
better speaker suppression using shuffling of embeddings trained
on the emotion task only, rather than on the embeddings from
adversarial task training. (a) We pursued the specific emotion
scoring task because speech signals are used in the finance in-
dustry to detect positive and negative affect in earnings calls
[25]. (b) This new approach is not specific to emotion scoring
and generalizes to more than two tasks and to combination with
GAN-based methods and other evaluation metrics such as WER.
(c) The approach uses fixed length snippets but variable length
snippets can be accommodated with the same procedure. (d) The
methodology is agnostic to ML training model choice and to
explainability technique used for feature importance. These easy
to implement privacy approaches will assist in many practical
applications.
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[16] D. Ericsson, A. Östberg, E. L. Zec, J. Martinsson, and O. Mogren,
“Adversarial representation learning for private speech generation,”
Jun. 2020, arXiv:2006.09114 [cs, eess]. [Online]. Available:
http://arxiv.org/abs/2006.09114

[17] C. Huang, P. Kairouz, and L. Sankar, “Generative Adversarial
Privacy: A Data-Driven Approach to Information-Theoretic Pri-
vacy,” in 2018 52nd Asilomar Conference on Signals, Systems, and
Computers, Oct. 2018, pp. 2162–2166, iSSN: 2576-2303.

[18] S. R. Livingstone and F. A. Russo, “The Ryerson Audio-Visual
Database of Emotional Speech and Song (RAVDESS): A
dynamic, multimodal set of facial and vocal expressions in North
American English,” PLOS ONE, vol. 13, no. 5, p. e0196391,
May 2018, publisher: Public Library of Science. [Online].
Available: https://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0196391

[19] S. R. Das, M. Donini, M. B. Zafar, J. He, and K. Kenthapadi,
“FinLex: An effective use of word embeddings for financial
lexicon generation,” The Journal of Finance and Data Science,
vol. 8, pp. 1–11, Nov. 2022. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2405918821000131

[20] J. S. Chung and A. Zisserman, “Signs in time: Encoding human
motion as a temporal image,” Aug. 2016, arXiv:1608.02059 [cs].
[Online]. Available: http://arxiv.org/abs/1608.02059
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