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Abstract
With recent advances in generative modelling, conversa-

tional systems are becoming more lifelike and capable of long,
nuanced interactions. Text-to-Speech (TTS) is being tested in
territories requiring natural-sounding speech that can mimic the
complexities of human conversation. Hyper-realistic speech
generation has been achieved, but a gap remains between the
verbal behavior required for upscaled conversation, such as par-
alinguistic information and pragmatic functions, and compre-
hension of the acoustic prosodic correlates underlying these.
Without this knowledge, reproducing these functions in speech
has little value. We use prosodic correlates including spectral
peaks, spectral tilt, and creak percentage for speech synthesis
with the pragmatic functions of small talk, self-directed speech,
advice, and instructions. We perform a MOS evaluation, and a
suitability experiment in which our system outperforms a read-
speech and conversational baseline.
Index Terms: speech synthesis, pragmatic functions, conversa-
tional TTS

1. Introduction
Voice assistants have become ubiquitous in recent years, pro-
viding users with a convenient way to interact with technology
using spoken language. Typically, these assistants use text-to-
speech (TTS) voices with neutral and warm speaking styles that
are easy to comprehend and suitable for command-based inter-
actions. However, as conversational AI assistants and social
robots become more prevalent in social and guiding scenarios,
there is a growing need for these systems to display their at-
titude towards what they are saying through a range of speak-
ing styles and prosodic realisations [1]. It is essential that the
TTS systems used for these kinds of applications allow for an
extended pragmatic repertoire, in order to effectively convey
the intended meaning and provide a more natural and engag-
ing interaction for the user [2]. Prosodic realization has been
found to be a key factor in the interpretation of the pragmatic
implications of a phrase [3]. In conversational settings, it is
also important to generate appropriate turn-taking cues [4, 5]
and indicate the speaker’s level of certainty [6]. Different prag-
matic functions require different pronunciations, prosodic real-
izations, and voice qualities. Instructions and advice need to be
delivered with perfect enunciation and pronunciation in a clear
voice, while small talk is characterized by more informal, col-
loquial tone with a more expressive and varied prosody, and
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self-directed speech is characterized by a less varied prosody
and a softer voice quality [7].

There are several neural TTS systems available that provide
different ways to control the speaking style and prosodic real-
ization. Some of these systems allow for control of speaking
rate [8, 9], pitch [10] or both [11, 12]. Some systems also allow
for control of the voice quality [13], and insertion of hesitations
[14, 15, 16]. One way of controlling the prosodic realisation in
neural TTS is to train it on a large corpus that contains a varied
manner of speaking and then automatically detect a given num-
ber of speaking styles (Global Style Tokens) [17]. By listening
to the generated speech, the style tokens could then be catego-
rized according to expressive speech acts they seem to convey.
Style tokens have also been used for emotional TTS trained on
a corpus of acted emotions [18]. Mellotron combines GSTs and
explicit f0 values to guide a Tacotron 2 decoder in order to con-
trol the prosodic realization [19]. There are also systems that
combine GSTs with speaker embeddings in multi-speaker TTS
[20]. A potential problem with global style tokens is that it is
not obvious whether it is possible to extend these from book
reading or acted emotions to the kinds of communicative func-
tions needed in real interactions [2].

There have been some notable efforts in recording conver-
sational TTS corpora where actors read scripts from chat-bots
and task-oriented dialogues [21, 22]. Specially recorded con-
versational data has also been combined with general purpose
data in multi-speaker TTS systems. In [23] a female voice ac-
tor read utterances that were tagged for 10 different speech acts,
e.g. greeting, instruction, surprise and uncertainty. Given text
and speech act as input, they were able to transplant the prosody
acquired from training on the conversational speech on to two
general-purpose TTS voices. An issue with using acted con-
versational corpora is that it is hard, even for a voice actor,
to sound spontaneous with believable emotions when reading
a dialogue script. It has been shown that spontaneous conversa-
tional speech is more varied than scripted conversational speech
in terms of variation in pitch and speaking rate [13]. A poten-
tial solution is to train the TTS system using a dataset of many
speakers speaking spontaneously in various contexts, and then
control the generated speaking style by providing a reference
audio alongside the input text [24, 25]. However, this approach
has limitations as only a single example of the desired speaking
style is provided, and matching a situation with the appropri-
ate reference file is challenging. Additionally, modelling long
dependency-based prosodic differences in speaking styles be-
comes difficult using this method.

In this paper, we propose that conversational neural TTS
systems should be trained on ecologically valid speech corpora
that have been specifically recorded for purpose of developing
the target dialogue application. This is in line with [27], which
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Figure 1: The Starmap [26] t-SNE plot for prosodic features

suggests that developers of conversational systems should en-
sure that the voices they use are trained on speech data that con-
tain the type of verbal expression they want their conversational
agents to be able to deliver.

We visualized the utterances in the conversational TTS
corpus based on prosodic and voice quality features using a
human-in-the-loop annotation tool [26], and annotated a sub-
set of the data for its pragmatic function. In order to iden-
tify pragmatic speaking styles beyond pitch and speaking rate
we used five speech features: mean energy, number of promi-
nence peaks, speech rate, spectral tilt and creakiness. Using this
human-in-the-loop method we selected four pragmatic func-
tions that were both important for the intended use case, and
that actually sounded different: small talk, instructions, ad-
vice and self-directed speech. We finetuned a speech synthe-
sis model trained on read and spontaneous speech with sep-
arate embeddings for each pragmatic function. In a percep-
tual MOS evaluation the finetuned system performed similarly
to a read-speech and spontaneous baseline. Additionally we
conducted a suitability listening experiment in which listen-
ers were asked to rate suitability of the speaking style to the
content and provided context, for which the finetuned sys-
tem outperformed both baselines. Samples may be found at
speech.kth.se/tts-demos/beyond_style/

2. Method
2.1. Data

The data was obtained from a publicly available multimodal
corpus of 15 interactions between a human moderator and two
users that were given the task of decorating an apartment us-
ing a GUI on a large touch screen [28]. In all recordings the
same person acted as mediator, order to use the multimodal in-
teractional data to develop a social robot that could be used as
a moderator in similar collaborative tasks. The moderator was
provided with a general outline of the topics to cover in each
interaction, but was not given specific instructions on what to
say. This allowed the moderator to engage in spontaneous yet
pre-planned extemporaneous conversations during the interac-
tions.

During the first phase, the moderator engaged in small talk
with participants about living situations with roommates, dis-
cussing topics such as tidiness and conflict. In the second phase,
the moderator instructed the participants about the setup of the
experiment, in which the participants collaborate in designing a
living space where they would hypothetically cohabit for three
months while being recorded for a reality television series. Dur-
ing the third phase, the moderator plays the role of interior dec-
orator who advised the participants on their design choices. In

Figure 2: Data collection photo, courtesy of the authors [28]

the final phase, the moderator comments on the participants’
final choices as engages in debriefing. Lastly, the corpus also
contains self-directed speech occurring as the moderator was
contemplating different design options or commenting on how
the users progressed while moving an object he had suggested
them to select next. As expected, the mediator performed dif-
ferent pragmatic functions in each phase, and these functions
were expressed using a variety of speaking styles.

We extracted the speech data from the moderator, a male
speaker of General American English, which were automati-
cally segmented into breath groups of 1 to 10 seconds. The cor-
pus was initially transcribed using ASR and subsequently man-
ually corrected. The final orthographic transcription includes
tokens for filled pauses, semi-colons for audible breaths, com-
mas for turn-internal pauses and full stops or question marks
at turn-endings. By adding these in the text input to the TTS
system dialogue system, designers get explicit control of the
manner of speaking of their conversational agents. These spon-
taneous speech data were supplemented with read-speech audio
of the mediator reading 1129 the CMU Arctic sentences [29]
and 1132 sentences from online news paper texts. The total
TTS corpus has a duration of approximately 8 hours (2h 26min
of reading and 5h 40min of spontaneous speech). The data will
be made publicly available in the future once privacy concerns
have been addressed.

2.2. Data annotation

A subset of 490 utterances of the corpus was selected based on
length (4-10 seconds) and subsequently annotated by the first
author for their pragmatic function using Starmap, a human-
in-the-loop annotation tool [26] that uses t-SNE dimensionality
reduction [30] on utterance-level prosodic features to aid in the
navigation of corpora. We selected five features on Starmap
that were hypothesized to aid in the distinction of the pragmatic
functions. The mean energy, the number of prominence peaks,
and the estimated speech rate were extracted using Continu-
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Figure 3: The model architecture.

ous Wavelet Transformation-based hierarchical prosody repre-
sentation as described in [31]. The prominence peaks were ex-
tracted using the high-level hierarchical scales as in [26, 31].We
supplemented these with per-utterance spectral tilt over voiced
segments and creak percentage. The spectral tilt was calculated
using the Python package parselmouth [32]. For the creak per-
centage, the duration of creaky voice per file was extracted us-
ing DeepFry [33], and the creak percentage was calculated with
the following formula:

creak percentage =
total creak duration

total duration
(1)

The t-SNE dimensionality reduction [30], as implemented in
Starmap, was used to create an overview of the prosodic fea-
tures in order to enable selection of utterances based on the
pragmatic function. The t-SNE plot can be found in Fig-
ure 1. We used the prompt selection tool in Starmap to an-
notate 490 utterances for their pragmatic function based on
both the prosodic features and semantic content. The prag-
matic functions used for annotations are: small talk (99 utter-
ances), instructions (130 utterances), advice/guidance (163 ut-
terances), and self-directed speech during decision making (98
utterances).

2.3. Model architecture

We used a modified PyTorch implementation of the Tacotron21

[34] to which we added pragmatic style conditioning. The prag-
matic style is identified in the model through an 8-dimensional
speaker-like embedding, set up after [19]. This embedding is
appended to each utterance’s encoded text and passed to the
attention and decoder blocks from the model, increasing the
number of parameters to 28.26M from 28.19M in the base im-
plementation. When a model is transfer learning from a model
with a different embedding, the embedding is reinitialized, irre-
spective of whether the number of embeddings is identical. A
model is first trained on the whole corpus with two embeddings,
indicating whether the utterance is from the read or spontaneous
part of the corpus. This model is trained for 70k iterations on 4
NVIDIA GeForce RTX 3090 12 GB GPUs with batch size 28
and with 5% of the data withheld as validation set. We used a
HiFi-GAN [35] vocoder fine-tuned on the same corpus for 383k
iterations on the top of the published model.2. At inference, de-
noiser strength is set at 0.04.

1https://github.com/NVIDIA/tacotron2
2https://github.com/jik876/hifi-gan

A model is then fine-tuned on the part of the training corpus
where a pragmatic function was identified (439 utterances). The
embedding from the original model is dropped and a new one
is initialized with four embeddings representing the four prag-
matic functions. In order to realize the pragmatic functions, the
model is then trained for a further 4000 iterations, with check-
points saved every 500 iterations. In the process of changing the
embedding, some of the speech quality is lost, and the stopping
point is chosen through informal listening tests where speech
quality sufficiently recovered, yet the pragmatic function can
still be effectively generated. At inference the pragmatic styles
can be generated by putting additional weight (2.5×) on a par-
ticular embedding compared to in the training, while setting the
weight on the other embeddings to 0.

3. Experiments
We conducted two listening experiments, a Mean Opinion Score
(MOS) subjective listening evaluation and a suitability listening
test in which we compared the pragmatic function setup to two
baselines: a read-speech baseline trained, which was trained on
the complete corpus for 74k iterations, and that was conditioned
with the read-speech embedding at synthesis, and a spontaneous
baseline which was trained identically to the read-speech base-
line and conditioned on the spontaneous-speech embedding at
synthesis.

In order to evaluate the quality of the synthesized speech,
a subjective listening experiment was conducted using a MOS
quality assessment for each of the baseline models and the prag-
matic synthesis. As this evaluation was designed with the sole
purpose of comparing speech quality across these systems, we
synthesized in-domain sentences that were representative of the
respective speech contexts. Specifically, the synthesized sen-
tences for the read-speech baseline were derived from popular
science style prose, whereas those for the two spontaneous se-
tups were derived from conversational language. For the read-
speech baseline 40 sentences were synthesized that contained
animal facts, while for the spontaneous baseline and the prag-
matic function setup we synthesized 48 sentences that were
evenly divided over the four pragmatic functions.

In addition to the MOS evaluation, we conducted a suitabil-
ity listening experiment. For this evaluation, we presented the
participants one stimulus each of the pragmatic function setup
and the two baselines. Participants were asked to rate How well
does the speaking style match the content and context? on a
scale from 1. Very poorly to 5. Very well.

The following context was provided for the respective prag-
matic functions:

1. Someone is mumbling something to themselves.
2. Someone is giving advice to you.
3. Someone is chatting to you.
4. Someone is giving you instructions.

All contexts matched the intended speaking style for the prag-
matic function setup. Participants were presented with a total
of 32 stimuli evenly divided over each pragmatic function with
the semantic content matching the function.

4. Results
4.1. Subjective MOS evaluation

For the MOS subjective listening evaluation, we recruited 3
groups of 20 native English speakers from the US who were
balanced for self-identified gender. Participants were presented
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Table 1: Mean Opinion Scores for each setup

System MOS
Pragmatic 3.73 ± 1.23
Spontaneous 3.60 ± 1.04
Read Speech 3.51 ± 1.03

with one stimulus per page. The stimuli were loudness normal-
ized at -18.0 LUFS. The results of the subjective listening test
can be found in Table 1. A one-way ANOVA showed no differ-
ences between the pragmatic function synthesis and the read-
speech and spontaneous baseline. The MOS for the individual
pragmatic functions were 3.23 for self-directed speech, 3.88 for
advice, 3.93 for small talk, and 3.89 for instruction.

4.2. Suitability listening test

Table 2: The means and standard deviations for the suitabil-
ity test. Italics indicate improvement over read speech, bold
indicates significant improvement over read- and spontaneous
speech

System Self-
directed

Advice Small
Talk

Instruc-
tions

Pragm. 3.47±1.09 3.89±1.06 4.18±0.88 3.87±0.99
Spont. 3.31±1.01 3.50±1.06 3.86±0.92 3.45±1.09
Read 2.28±1.21 3.25±1.15 3.08±1.19 3.20±1.14
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Figure 4: Suitability test results

We recruited 20 native English speakers on Prolific 3 who were
balanced for self-identified gender from any majority English-
speaking country or territory. The results of the suitability lis-
tening test can be found in Table 2 and Figure 4. The synthe-
sis according to the pragmatic function was found significantly
more suitable than the read speech for each of the pragmatic
functions (p < 0.0001), and was rated as more suitable than the
spontaneous speech for the pragmatic functions of advice (p =
0.006), small talk (p = 0.02), and instructions (p = 0.002) on
a one-way ANOVA with post-hoc Tukey. Additionally, sponta-
neous self-directed speech and small talk significantly outper-
form read-speech synthesis.

5. Discussion
In our study, we followed the suggestions of [36] and evalu-
ated both the quality and appropriateness of synthesized speech

3https://www.prolific.co

samples based on their pragmatic function in mediated inter-
actions. Our results showed discrepancies between MOS and
suitability listening tests, indicating the potential of in-context
evaluation as an improvement to standard MOS evaluation, es-
pecially for expressive and spontaneous synthesis. While read-
speech often receives higher quality ratings in MOS evaluations
due to optimal recording conditions, most applications of TTS
require speech that goes beyond high quality and necessitate
appropriate speech and dialogue behaviors not obtainable from
read-speech.

We propose that modelling prosody at the pragmatic func-
tion level is meaningful, as it captures long dependency-based
prosodic differences and enables synthesis with limited labelled
in-domain data. Our work diverges from the style-based focus,
prosodic modification, and voice conversion commonly seen
in speech synthesis. Unlike style-based approaches like GST
[17], we provide a more concrete designation of pragmatic func-
tions that can be integrated into applications requiring specific
communicative functions. Moreover, pragmatic functions can
be used when there is insufficient data for GST. Compared to
prosodic control, pragmatic function synthesis offers benefits
by addressing the challenge of implementing prosodic control
throughout an entire user-based interaction, which would also
apply to voice conversion.

Additionally, we aim to enhance our understanding of the
relationship between prosodic correlates of voice quality and
speech variation specific to dialogue acts. To achieve this, we
manually annotated a subset of sentences from the corpus using
the human-in-the-loop tool Starmap [26]. This tool, employing
prosodic correlate measurements, Continuous Wavelet Trans-
formations, and dimensionality reduction, helps identify the
prosodic aspects that distinguish speech typical for each func-
tion: small talk, instruction, advice, and self-directed speech.

One limitation of our current implementation is the heuris-
tic selection of the checkpoint for pragmatic function synthesis.
To address this, an automated checkpoint selection method pro-
posed by [23] could be employed, which objectively assesses
a model checkpoint using a text-audio pair from a held-out set
and evaluates the synthesized intonation pattern. Furthermore,
improvements in this area could be achieved through additional
annotated data, which would allow training with the pragmatic
function embedding without requiring fine-tuning.

6. Conclusion
In this paper, we propose a spontaneous TTS system which
leverages data that was recorded for the development of a robot
guide application. A human-in-the-loop tool was used annotate
a subset of the corpus for the pragmatic function of the speech,
based on prosodic and voice quality features. The data were
supplemented with read speech for a base voice that was fine-
tuned with separate embeddings for pragmatic functions. The
proposed system was evaluated using MOS, in which it was
rated comparable to read-speech and spontaneous baselines,
and a suitability evaluation, the results of which demonstrate
that the system outperforms the baselines in terms of suitability
of the speaking style to the content and provided context.

Our results demonstrate the importance of using appropri-
ate speech data to train conversational systems to ensure that
they can deliver the desired verbal expression, and the short-
comings of MOS when using speech synthesis in applied set-
tings. We emphasize that this paper is a preliminary undertak-
ing that lays the groundwork for further in-context evaluation,
which we hope will see increased usage in TTS evaluations.
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