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Abstract
Automatic speech recognition (ASR) and speech emotion
recognition (SER) are closely related in that the acoustic fea-
tures of speech, such as pitch, tone, and intensity, can vary ac-
cording to the speaker’s emotional state. Our study focuses on
a joint ASR and SER task, in which an emotion token is tagged
and recognized along with the text. To further improve the joint
recognition performance, we propose a novel training method
that adopts the global style tokens (GSTs). The style embedding
is extracted from the GSTs module to enhance the joint ASR
and SER model to capture emotional information from speech.
Specifically, a conformer-based joint ASR and SER model pre-
trained on a large-scale dataset is jointly fine-tuned with style
embedding to improve both ASR and SER. The experimen-
tal results on the IEMOCAP dataset showed that the proposed
model achieves a word error rate of 15.8% and four emotion
classification weighted and unweighted accuracy of 75.1% and
76.3%, respectively.
Index Terms: automatic speech recognition, speech emotion
recognition, global style tokens

1. Introduction
Automatic speech recognition (ASR) and speech emotion
recognition (SER) are closely related research areas that have
gained significant attention in recent years [1, 2]. ASR fo-
cuses on transcribing speech into text, while SER aims to recog-
nize a speaker’s emotional state based on speech signals. ASR
has made considerable progress in recent years, thanks to the
availability of large amounts of data, advances in training tech-
niques and efficient structures. Especially, conformer-based
models [3, 4] which show impressive results of speech recog-
nition benchmark datasets by capturing both local and global
features. Despite of these advance, ASR still faces challenges
recognizing speech from speakers with different accents, lan-
guages, and emotional states [5, 6].

Researchers have explored various approaches in the area of
SER [7, 8], including the use of acoustic features such as pitch,
loudness, and spectral information to extract emotional infor-
mation from speech signals. Some studies [9,10] have also em-
ployed the linguistic features, obtained through sentiment anal-
ysis, to improve the accuracy of SER models. However, de-
spite significant progress, SER also still faces challenges, such
as dealing with individual differences in emotional expression
and identifying emotions in noisy environments. Several stud-
ies [11–13] have explored the integration of ASR and SER to
improve the performance of both tasks. One approach [14] is to
use the latent features extracted from a pre-trained ASR model
to perform SER. Concurrently, some studies [15, 16] have pro-
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posed using an emotion-dependent feature selection method to
select the most informative acoustic features for ASR based on
the speaker’s emotional state. Other approaches [6, 17, 18] use
text outputs from the pre-trained ASR models, leading to im-
proved SER accuracy.

Our proposed method follows the recent trends in joint ASR
and SER task, where a unified ASR–SER model is trained to
simultaneously recognize the text and emotional state of the
speech signals. Specifically, we aim to improve the perfor-
mance of both ASR and SER by incorporating global style to-
kens (GSTs) [19] during the training. The GSTs module adds an
additional input to the desired system, which is a set of learned
embedding called “style embedding”. This style embedding
captures the global characteristics of the speaking style, such
as emotion, pitch, speaking rate, or intonation. By conditioning
the style embedding into our proposed model, we aim to reduce
the word error rate (WER) of emotional speech and improve the
accuracy of the speaker’s emotional state prediction. The exper-
imental results demonstrated the effectiveness of our approach
in enhancing the WER of emotional speech and recognizing the
speaker’s emotional state. The main contributions of our work
are summarized as follows:
• Based on a pre-trained ASR model using a large-scale speech

dataset, we propose a joint training method for ASR and SER
in an emotional speech.

• We propose a novel training method that adopts the GSTs to
improve the joint ASR and SER performance.

• Our proposed approach achieved the state-of-the-art ASR and
SER performance on the IEMOCAP dataset.

2. Related Works and Motivations
Kons et al. [5] developed a recurrent neural network (RNN)-
transducer-based ASR model that can perform both ASR and
SER simultaneously. To enable joint ASR and SER, an emo-
tion token was added to the text transcription. However, the
joint model performed worse than separately trained ASR and
SER models. Kons et al. explained that this was because the
original training of the ASR model ignored a lot of informa-
tion in the speech useful for accurately identifying emotions.
Therefore, further research is needed, either by using a more
extensive training dataset or incorporating the emotion classi-
fication objective into the training of the ASR. Chen et al. [6]
used a conformer-based encoder pre-trained with a large ASR
dataset for the SER task. The embedding extracted from the
encoder was introduced to a multi-head self-attention (MHSA)-
based RNN structure to perform emotion recognition. Chen et
al. showed that a model pre-trained on the large-scale corpus
dataset used in the ASR task could leverage the SER task.

The GST-Tacotron model is a neural network-based ap-
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proach to generate speech that can sound more natural and
expressive [20]. This model combines the Tacotron architec-
ture, which is an end-to-end speech synthesis system [21], with
a novel technique called GSTs. The role of the GSTs is to
help the system capture and model the global speaking style
characteristics that are not directly related to the input. In-
spired by the two previous researches [5, 6], we aim to de-
velop an efficient joint ASR and SER model for emotional in-
put speech. Specifically, we use a conformer-based attention-
based encoder-decoder (AED) model [22] pre-trained on a large
speech recognition dataset as the baseline model for our study.
By incorporating the GSTs into the baseline model, our pro-
posed model aims to improve emotional speech transcription
and emotion recognition performance.

3. Method
3.1. Joint speech and emotion recognition
The overall framework we propose for the joint ASR and SER
model is illustrated in Figure 1. We use the conformer-based
AED model, depicted on the left side of the Figure 1, initial-
ized by applying a pre-trained model to obtain efficient conver-
gence and optimal performance for joint ASR and SER train-
ing. The AED model have been used in typical end-to-end
ASR, which outperforms the connectionist temporal classifi-
cation (CTC) model [23]. Because previous studies have sug-
gested that multi-task learning using the CTC loss function can
improve the performance of the AED model, we design the
overall loss function as a weighted sum of AED and CTC loss
functions:

LOverall = − 1

N

N∑

n=1

log
(
αPAED(cn|xn)

+ (1− α)PCTC(cn|xn)
)
, (1)

where α is a hyperparameter that satisfying 0 ≤ α ≤ 1, and
x ∈ RT ′

and c ∈ RL+1 denote input speech utterances and
target sequence of its labels, respectively. We denote the corre-
sponding word sequence of x as c′ ∈ RL, where T ′, L, and N
is a length of raw speech, word sequence, and batch size, respec-
tively. Our target word sequence is defined by additionally in-
cluding a corresponding emotion token e of x as: c = c′∪{e},
where e ∈ {e1, ..., en} of n-emotional classes. Finally, PAED

and PCTC denote the posterior probability of the c conditioned
on the input, x for AED and CTC loss, respectively. Specif-
ically, PAED can be formulated by using the additional state
token, end-of-sentence symbol, ⟨eos⟩, as follows:

PAED(c|x) =
L+2∏

i=1

P
(
ci|ci−1, . . . , c0,vi

)
, (2)

where cL+2 = ⟨eos⟩, cL+1 = e, c0 = ⟨sos⟩, and v denotes as
a context vector, which aggregates the relevant portions of the
encoder and decoder outputs within attention method. The start-
of-sentence symbol, ⟨sos⟩, which serves before the decoder pro-
duces any outputs, it is used as decoders initial input. PCTC de-
notes the posterior probability for CTC, by marginalizing over
all possible alignments for CTC, and it can be formulated as:

PCTC(c|x) =
∑

A∈ACTC
c,x

T∏

t=1

P
(
at|at−1, . . . , a1,

hM = (hM
t , . . . , hM

1 )
)
, (3)

where aT = e, and ACTC
c,x denote the set of all valid align-

ments, each alignment of time frame t is denoted as at. Also,

Figure 1: Schematic of proposed joint model with GSTs module.

hm ∈ RT×D denotes the output of the m-th conformer encoder
block, and the M , T , D are a number of encoder blocks, frame
length, and representation feature size of hm, respectively. Our
baseline model, based on the conformer-based AED model ini-
tialized by a pre-trained model and fine-tuned by Equation 1,
is an extended method compared to the previous joint ASR and
SER research. Especially, using a pre-trained model improves
the training process through efficient convergence, and placing
an emotion token at the end of the word sequence could utilize
the decoder’s ability of AED, resulting in classifying emotion
states more accurately.

3.2. Conditioning style embedding

We use the GSTs module, which is commonly used in speech
synthesis tasks. Because of its emotional modeling property, we
use it when jointly training emotional speech and the speaker’s
emotional state. The style embedding, se ∈ RD′

, is the output
of the GSTs module se = GSTs(x) for the speech x. After that,
we use one feed-forward network (FFN) to add it to the outputs
of one half-step FFN of every conformer encoder layers. The
detailed formulas mentioned above are as follows:

h̃m
= hm +

1

2
FFN

(
LayerNorm

(
hm−1)) , (4)

ĥ
m

= h̃m
+ FFN(se), (5)

where h̃m
and ĥ

m
denote hidden representations of m-th the

conformer encoder block and those dimension are in RT×D ,
respectively. As illustrated in Figure 1, the last parts of the
conformer encoder block is organized same with original con-
former as in [3]. The style embedding, which is mapped by
one FFN module, is used to condition multiple times to all the
encoder blocks.

4. Experiments Setup
4.1. Dataset and preparation

We employed a large-scale pre-trained AED model1 as our
baseline, which was trained on a 10,000 hours subset of Gi-

1Pre-trained conformer-based AED model can be downloaded from
https://zenodo.org/record/4630406#.ZAgdhnZByUl.
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Table 1: WER of the proposed method on IEMOCAP dataset.

Method WER (%) WW (%) UW (%)
Hap Sad Ang Neu

Conformer-based AED 20.1 15.5 12.0 19.0 17.3 16.6
+ emotion labels cond.† 17.6 13.8 10.3 17.2 15.3 14.7
+ GSTs cond. 19.9 14.7 11.6 18.9 17.0 16.3
+ P.T. GSTs cond. 19.1 14.6 11.3 18.6 16.5 15.9

†Indicates the oracle one-hot emotion labels.

gaspeech dataset [24]. Gigaspeech dataset is a multi-domain
English ASR corpus that includes recordings from various en-
vironments, such as audiobooks, podcasts, and YouTube.

We used the IEMOCAP dataset [25] to train and evaluate
the ASR and SER for the proposed method. The IEMOCAP
dataset is a multi-modal dataset containing 12 hours of audio,
text, emotion label, and video recordings of naturalistic dyadic
conversations of 10 actors (5 male, 5 female) in English. The
dataset consists of 10 sessions, each session containing a con-
versation between two actors. We merged excitement and hap-
piness into the single happiness emotion class to make fair com-
parison with the previous studies [26]; the four emotions (n=4)
were used (happy, sad, angry, and neutral). There were a total
of 5,531 utterances across all sessions. The label distribution
of the dataset was imbalanced, with neutral being the most fre-
quent (30.9%), followed by happiness (29.6%), anger (19.9%),
and sadness (19.6%).

4.2. Training procedure and evaluation

We applied 5-fold cross-validation for the IEMOCAP dataset
to prevent the impact of limited data. We used three sessions
for training, one for validation, and the remaining for testing.
We used the Adam optimizer [27] with a learning rate of 1.5e-3
to train the proposed joint ASR and SER model. We trained
the model for 100 max epochs with the early stopping strategy
depending on the evaluation performed on the validation set.
We used batch size of 64 (N=64) and set the hyperparameter
α = 0.3. For evaluation, we chose the 10-best models accord-
ing to the validation accuracy. We averaged the 10-best models
when decoding the validation and the test sets. We used the
beam search with a beam size of ten. We implemented the pro-
posed method in PyTorch [28] and conducted experiments on
two NVIDIA GeForce RTX 3090 GPUs with 24GB memory.

4.3. Evaluation metrics

We evaluated the WER and emotion prediction accuracy for
joint ASR and SER tasks. Because the IEMOCAP dataset
suffers from class imbalance, the emotion prediction accuracy
was evaluated using weighted accuracy (WA): accuracy over all
classes; and unweighted accuracy (UA): the average accuracy
for each category [29]. For the same reason, we evaluated ASR
utilizing weight with WER. We denoted the weighted WER
(WW): WER over all classes; and unweighted WER (UW): the
average WER for each category. To the best of our knowledge,
WW and UW are the first attempts. With the exception of Ta-
bles 3 and 5, which will be discussed later, all experiments in
this study used text transcription with emotion token to calcu-
late WER.

4.4. Model architecture

We used the ESPnet toolkit2 [30] to implement the AED
model. The AED model consisted of 12 layers (M=12) of

2ESPnet toolkit source code from https://github.com/espnet/espnet.

Table 2: Accuracy of emotion prediction of the proposed method
for IEMOCAP dataset.

Method ACC (%) WA (%) UA (%)
Hap Sad Ang Neu

Conformer-based AED 67.7 77.8 78.8 71.1 72.8 73.9
+ emotion labels cond.† 100 99.9 100 100 100 100
+ GSTs cond. 65.4 78.3 82.7 72.1 73.2 74.6
+ P.T. GSTs cond. 70.1 79.7 82.9 72.4 75.1 76.3

†Indicates the oracle one-hot emotion labels.

the conformer-based encoder and six layers of the transformer-
based decoder [3, 4] identical to those described in Chen et
al. [6]. The number of parameters in the AED model was 112M.
The recognition unit was composed of words, and each emotion
token was treated as a unique recognition unit to be output af-
ter the speech recognition result was produced. We used the
pre-trained GSTs in the GST-Tacotron model3 trained on the
emotional dataset for the text-to-speech task. The GSTs mod-
ule consisted of a reference encoder and a style token layer.
The reference encoder consisted of six layers of convolution
and one layer of gated recurrent unit network. The style to-
ken layer received the output of the reference encoder as an in-
put and outputs the 256-dimensional style embedding through
the attention module. The number of parameters in the GSTs
module was about 480k. The feature extractors for the AED
model and GSTs module converted raw input speech into an 80-
dimensional log-mel spectrogram using a Hann window. How-
ever, there were several differences in their configurations. The
AED model used a 512-size FFT, 32 ms window length, and 16
ms hop size, while the GSTs module used a 2048-size FFT, 50
ms window length, and 12.5 ms hop size.

Table 3: Comparison of WER with and without emotion token
in the output of the proposed model. W/ E.T. indicates the with
emotion token.

Method W/ E.T. WER (%) WW (%) UW (%)
Hap Sad Ang Neu

Conformer-based AED ✓ 20.1 15.5 12.0 19.0 17.3 16.6
+ P.T. GSTs cond. ✓ 19.1 14.6 11.3 18.6 16.5 15.9

Conformer-based AED ✗ 19.1 14.9 11.3 18.1 16.4 15.8
+ P.T. GSTs cond. ✗ 18.3 14.1 10.8 17.7 15.8 15.2

5. Experimental Results
5.1. Effect of style embedding conditioning

We first evaluated joint ASR and SER performance on the
conformer-based AED model without conditioning on style em-
bedding. Then, we validated our experiments by conditioning
on the conformer-based AED model with the one-hot encoding
of the target emotion labels, which denote an oracle environ-
ment. Tables 1 and 2 show the WER and emotion prediction
accuracy, including performances for each of the four emotion
classes, respectively. As shown in the first and second lines
of each table, all performance for the oracle environment was
better than the baseline. Thus, we compared the performance
changes for ASR and SER when conditioning the style em-
bedding extracted from non-pre-trained and pre-trained GSTs
module to the conformer-based AED model, respectively. The
method of conditioning the style embedding extracted from the
non-pre-trained GSTs module with the conformer-based AED
model improved the performance, but it was not significant.
The method of conditioning the style embedding extracted from

3Pre-trained GST-Tacotron model and the source code were from
https://github.com/KinglittleQ/GST-Tacotron.
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Figure 2: Confusion matrix for the emotion recognition per-
formance. The x-axis and y-axis represent the prediction and
reference emotion labels.

the pre-trained GSTs module with the conformer-based AED
model showed a 4.6% and 4.2% performance improvement in
WW and UW, respectively, compared to baseline performance.
Similarly, WA and UA were improved by 3.2% and 3.2% rela-
tively. We consider style embedding extracted from pre-trained
GSTs modules useful for emotion prediction and improving
transcription of emotional speech.

We also investigated the WER calculated by excluding
emotion token from the output of our proposed model trained
with text including emotion token and reported it in Table 3.
Our proposed model showed 15.8% when calculating the WER
without emotion token on the IEMOCAP dataset. This result
is noteworthy when compared to other studies. Figure 2 shows
the confusion matrix for emotion prediction performance in the
baseline and proposed experimental environments. The pro-
posed simultaneous ASR and SER model showed improved
prediction performance for all four emotion classes, particularly
for the happy emotion class.

5.2. The analysis of conditioning encoder layers

We examined the effect of conditioning different layers of the
encoder in a speech and emotion recognition system. Specifi-
cally, we analyzed the trends in WER as we conditioned each
encoder layer. Figure 3 illustrates that the WER gradually im-
proved as we conditioned on the lower encoder layer compared
to the upper ones. Notably, the best performance was achieved
when we conditioned all the layers. Our findings suggest that
conditioning on multiple layers of representation can effectively
improve the accuracy of speech recognition.

Table 4: Comparison of performance based on emotion token
position. L.E. indicates whether the emotion token is located
front or end of the text transcription.

Method L.E. SER ASR

WA (%) UA (%) WW (%) UW (%)

Conformer-based AED front 71.3 72.6 18.3 17.8
end 72.8 73.9 17.3 16.6

+ P.T. GSTs cond. front 73.0 74.2 17.7 17.3
end 75.1 76.3 16.5 15.9

5.3. Effect of emotion token position

We compared the performance variation of ASR and SER ac-
cording to the position of the emotion token in Table 4. The
experimental results showed that both ASR and SER perform
better when the emotion token was positioned after than be-
fore the text transcription. Placing an emotion token in front of
a text transcription could lead to incorrect transcription if the
predicted emotion was inaccurate. However, when the emo-
tion token was placed at the end of the text transcription, emo-

Figure 3: Comparison of WER performance changes when con-
ditioning style embeddings at specific encoder block indexes.

tion recognition performance improved as contextual informa-
tion was used to predict the emotion.

5.4. Comparison to previous works

Table 5 shows our comparison of ASR and SER with previ-
ous works on the IEMOCAP dataset. Our method is extended
from the two previous methods [5,6], and we propose a method
for conditioning the style embedding extracted from the GSTs
module to the AED model. To the best of our knowledge, the
proposed method achieves the state-of-the-art in both ASR and
SER performance on the IEMOCAP dataset.

Table 5: Comparing ASR and SER performance with previous
works on the IEMOCAP dataset. P.T. indicates whether a large-
scale pre-trained model is employed, and J.T. indicates whether
ASR and SER are performed jointly. Our WER is calculated
without emotion token in this table.

Method P.T. J.T. SER ASR

WA (%) UA (%) WER (%)

Previous
Yeh et al. (2020) [12] 63.1 64.4 56.4
Feng et al. (2020) [11] 68.6 69.7 35.7
Amiriparian et al. (2021) [31] - 73.8 22.2
Li et al. (2022) [13] 63.4 - 32.7
Kons et al. (2022) [5] ✓ 72.0 - 20.8
Chen et al. (2022) [6] ✓ - 76.1 16.4

Proposed
Conformer-based AED ✓ ✓ 72.8 73.9 17.3
+ P.T. GSTs cond. ✓ ✓ 75.1 76.3 15.8

6. Conclusions
Our study proposed the novel joint ASR and SER model to im-
prove emotional speech recognition by conditioning the style
embedding extracted from the GSTs module to the encoder lay-
ers. Our method allowed for a combined output of a speech
signal’s text transcription and emotional state, enabling efficient
joint speech and emotion recognition. The experimental results
on the IEMOCAP dataset showed that the joint model achieved
a significantly improved WER and accuracy of emotion predic-
tion in an emotional speech and demonstrated the effectiveness
of incorporating style embedding conditioning into the joint
model. Our proposed model showed significant potential to im-
prove the performance of recognizing emotional speech.
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