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Abstract
Prosodic phrasing is one of the factors influencing the nat-

uralness of synthesized speech. In this paper, we enrich the
phonetic representation for neural speech synthesis with addi-
tional markers denoting the strength of phrase breaks between
words. These markers are assigned to the training data automat-
ically, using our previously introduced model for audio-based
phrase boundary detection. We tested the approach with two
different levels of resolution for the break indices – either ten
distinct levels (P10) or only “ToBI-like” four levels (P4). Listen-
ing tests with two different speaker voices show a statistically
significant preference among listeners for P10 or P4 over the
baseline speech synthesis without these markers (P0), although
which version is judged as better depends on the voice.
Index Terms: speech synthesis, phrasing, phrase breaks,
wav2vec

1. Introduction
Text-to-speech (TTS) synthesis aims at generating human-like
speech from input text. Modern neural speech synthesis mod-
els have dramatically improved the quality of synthetic speech.
Many sophisticated architectures have been proposed, gradu-
ally replacing CNN/RNN-based models (e.g. [1, 2, 3]) with
Transformer-based models [4, 5, 6], original autoregressive mod-
els [3, 4] with more powerful generative models (VAE-, GAN-,
flow-, and diffusion-based ones [7, 8, 9]), and two-stage acoustic
models/vocoders [3, 5] with fully end-to-end models [7, 10].

In addition to models’ architectures, the representation of
the input text is also an important factor. In the true end-to-end
approach, raw text (i.e., letters or graphemes) is used as the input,
mapping the input graphemes directly to their acoustic counter-
parts. However, since graphemes generally do not represent
pronunciation, they need not correspond to the acoustic represen-
tation of the synthesized speech closely [11]. On the other hand,
the phonetic representation of the input text in the form of a
sequence of phonemes (or phones) is often used as it has a more
direct relationship to the acoustic signal than graphemes, and
thus, it approximates speech more closely than the graphemes
[11, 12].

The input representation (either in the form of a text or pho-
netic labels) inherently contains important information about the
prosody of the synthesized speech. Since prosody (i.e., intona-
tion, speech tempo, phrasing, etc.) to a large extent influences
the naturalness of the synthesized speech, speech synthesis mod-
els have to extract prosody-related information from the input,
interpret it correctly, and ensure that the output speech contains
appropriate prosodic characteristics. This is also the case with
prosodic phrasing – appropriate phrasing (placing phrase breaks
of suitable strength and length in the right places) influences the

intonation and tempo of output speech and greatly increases the
naturalness and also intelligibility of TTS systems [13].

For text-to-speech, phrase breaks are typically predicted
from input textual/phonetic representation. Many different
approaches have been studied during the last decades, in-
cluding deterministic approaches based on punctuation marks,
classification-based approaches with different sets of features,
HMMs, and neural networks [14, 15, 16, 13, 17, 18]. Some
of them aimed at automatic annotation approximating the well-
known ToBI scheme [19, 20, 21, 22]. Other approaches detect
phrase boundaries in the speech signal and are often used to
provide speech corpora with audio annotation [23, 24, 25, 26].
Textual and acoustic information could also be combined
[27, 28, 29].

In this paper, we approximate the phonetic representation
inputting to a speech synthesis system even more closely to its
corresponding speech by enriching it with additional markers
denoting the strength of phrase boundaries. The markers are
assigned to the training data automatically, using our previously
introduced model for audio-based phrase boundary detection
[26]. Two different phrase boundary strength scales were in-
vestigated – either ten distinct levels (P10) or only “ToBI-like”
four levels (P4)1. Finally, we examine whether the enriched
representation improves the naturalness of speech synthesized
by a neural speech synthesis model.

The paper is organized as follows. In Section 2, we describe
the phrase detector used to label phrase boundaries and the train-
ing data used to train it. The exact process of creating the labels
from the model’s predictions is explained in Section 3, where
we also present the speech synthesis experiment and describe
speech datasets used to train a speech synthesizer. Results and
discussions are presented in Section 4. Finally, conclusions and
future work are drawn in Section 5.

2. Phrase boundary detection
Our approach to labeling the strength of the phrase boundaries
was inspired by an observation in our previous work [26], which
focused specifically on the detection of prosodic phrase bound-
aries in the speech signal.

In the paper, we observed that even when our model was
trained only to detect full prosodic boundaries (ToBI break in-
dex 4), it also predicted relatively high scores for intermediate
boundaries (ToBI break index 3). In other words, the model
seemed to detect some sort of acoustic feature that is common to
both types, only pronounced to a different degree.

In our current work, we decided to extrapolate that idea to a
larger scale, by reinterpreting the predictions of the model as a

1The P4 scheme resembles the ToBI scheme [19] with break indices
0 and 1 combined into a single category.
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measure of the strength of potential phrase boundaries between
words. For this, we have taken our approach2 from [26] and
slightly adapted it for our current work.

Most of the details of the model and its training are kept
identical to the original paper, but we briefly describe them here
for convenience. The creation of the final labels from the model’s
outputs will be explained in Section 3.2.

2.1. Training data

The training data for the model were the same as in the original
paper [26]: a set of recordings of Czech radio news bulletins,
referred to as the News-Reading Speech (NRS) corpus. There
are 12 recordings, each spoken by a different speaker, with a
total length of 42 minutes (486 sentences, 6371 words). The
data are annotated by phonetic experts [30] following the ToBI
labeling guidelines [31], although only ToBI break indices 3
(intermediate phrase break) and 4 (full prosodic phrase break)
are included. Of these, ToBI break indices 4 represent 22%
of all breaks between words (including the ends of sentences),
while 7% are marked as break index 3. The remaining 71% have
neither label.

2.2. Model for phrase boundary detection

The model for phrase boundary detection is based on wav2vec
2.0 [32]. Wav2vec 2.0 (or “wav2vec2”) is a self-supervised
framework for speech representation which has recently gained
popularity in a wide range of speech processing tasks [33, 34].

As in [26], we use the pre-trained wav2vec 2.0 base model
“ClTRUS”3 [35] and fine-tune it to predict a score from 0–1
for each audio frame (i.e. every 20ms of speech, as usual for
wav2vec2), indicating the presence or absence of a prosodic
boundary in each frame. The input of the model is 16 kHz audio
signal, zero-padded or split into chunks of 20 s.

We fine-tuned the model on the entirety of the NRS data (all
12 speakers), with 10 epochs. Unlike the original paper, which
averaged outputs from multiple initializations for better consis-
tency of results, we only used a single initialization. Otherwise,
all settings were identical to [26].

The fine-tuning process uses a fuzzy labeling function,
where ground-truth prosodic phrase boundaries (ToBI break
index 4) are given the value 1, which linearly decreases to zero
over an interval of 0.2 s on each side. Intermediate phrase bound-
aries (ToBI break index 3) are labeled in the same way, but with a
maximum value of 0.5 (an example of this labeling can be seen in
Figure 1). Consequently, the phrase boundary detection is done
as a regression task, rather than a simple yes/no classification.

Figure 2 shows a histogram of predicted labels on the NRS
data, with a separate set of models, using 12-fold cross-validation
and 5 training epochs (to avoid evaluating on training data).

In [26], we used a decision threshold and found prosodic
boundaries as peaks in the output above a certain height. How-
ever, here we can instead reinterpret the raw predicted scores
as a continuous scale that measures the strength of the phrase
boundaries between words. The process of creating these labels
will be described in Section 3.2.

2Our code is available at https://github.com/mkunes/
w2v2_audioFrameClassification

3Czech language TRransformer from Unlabeled Speech,
available from https://huggingface.co/fav-kky/
wav2vec2-base-cs-80k-ClTRUS
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Figure 1: Example of the reference labels and predictions of the
phrase boundary detection model on NRS data.

Figure 2: Histogram of predicted scores on the NRS data, cat-
egorized by ground-truth labels and normalized as probability
distributions (independently of each other).

3. Speech synthesis experiment
In this section, we describe a speech synthesis experiment in
which we use the phrase detector introduced in Section 2 to
detect phrase boundaries in source speech datasets for speech
synthesis and to enrich their phonetic representation accordingly.
The aim of this experiment was to test whether the enriched
phonetic representation can improve the quality of synthetic
speech.

3.1. Speech datasets

To train speech synthesis models, we used two large corpora
of Czech news-reading speech recorded by a professional male
(Speaker M) and female (Speaker F) speaker. The corpora
were primarily designed for the use with unit-selection speech
synthesis [36], but Vı́t et al. [37] showed that the corpora are
also suitable for neural speech synthesis. They contain paired
text-audio data with approximately 14 hours of audio (includ-
ing pauses) distributed over 12,240 (Speaker M) and 12,708
(Speaker F) utterances. For our purposes, the audio has been
downsampled to 24 kHz, carefully annotated, and the resulting
text has been normalized to expand out numbers, dates, ordi-
nals, monetary amounts, etc. Finally, the text of each audio was
transcribed into a sequence of phones using a set of carefully
designed Czech phonetic rules and a pronunciation dictionary
with words that do not obey Czech pronunciation rules [17].
Since Matoušek & Tihelka [12] showed that it is advantageous
to explicitly include pauses and punctuation marks in the pho-
netic representation when training a synthesizer, each phonetic
transcript was supplemented by pauses using an external speech
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Table 1: Mapping of the wav2vec2 model outputs to the phrase break indices.

raw value < 0.1 [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) ≥ 0.9

label - P10 0 1 2 3 4 5 6 7 8 9
label - P4 0 0 1 1 1 2 2 2 3 3

Table 2: Example sentence from the listening test, as transcribed for the TTS models using International Phonetic Alphabet (IPA). The
symbol # denotes pauses. English translation: “The elections were not interrupted; rather, due to high interest from voters, they were
extended by two hours.”

Text Volby nebyly přerušeny, ale naopak kvůli vysokému zájmu voličů byly prodlouženy o dvě hodiny.

P0 # vOlbI nEbIlI prfiErUSEnI, # alE naOpak kvu:lI vIsOkE:mU za:jmU vOlI
>
tSu: bIlI prodl >oUZenI O dvjE HOéInI. #

P4 # vOlbI0 nEbIlI0 prfiErUSEnI,3 # alE0 naOpak2 kvu:lI0 vIsOkE:mU0 za:jmU0 vOlI
>
tSu:3 bIlI0 prodl >oUZenI2 O0 dvjE0 HOéInI.3 #

P10 # vOlbI1 nEbIlI0 prfiErUSEnI,9 # alE0 naOpak5 kvu:lI0 vIsOkE:mU0 za:jmU0 vOlI
>
tSu:8 bIlI0 prodl >oUZenI6 O0 dvjE0 HOéInI.9 #

Figure 3: Histogram of the P4 and P10 labels for the NRS data
and for the training data of the two voices.

segmentation tool [38].

3.2. Phrase boundary labels

To obtain labels indicating the strength of potential phrase bound-
aries in the speech corpora, we first used the model described
in Section 2 to obtain frame-level predictions, as in Figure 1.
For this, the signal was downsampled to 16 kHz, as required by
wav2vec2. Then we mapped the predictions to individual words
in the following manner:

First, we detected all peaks (i.e. all local maxima) in the
output of the wav2vec2 model and assigned each peak to the
nearest spoken word within 100ms. This was based on the end
time of the words, as given by the segmentation tool mentioned
in Section 3.1. Then we labeled each word based on the highest
peak assigned to it, using the mapping in Table 1 to convert
the continuous values to digits 0–9 (P10) or 0–3 (P4), where 0
means “no break” and 9 (resp. 3) means “strongest break”.

The reason why we use ten categories in one of the options
is that the phrase breaks need to be represented by a single
character in the transcripts used by the TTS system. Thus, digits
0–9 seem like a natural choice. However, they may be too many
– so we also explore a second option with fewer labels.

The number of labels and the mapping for the second option
P4 were selected based on the distribution of individual labels
in the training data, especially in relation to the ground truth
labeling in the NRS corpus – as illustrated in Figures 2 and 3.

Finally, in addition to the two phrasing schemes P4 and P10,
we also have a baseline without any phrase markers, which we

will refer to here as P0. Table 2 shows an example sentence,
transcribed using all three options, P0, P4, and P10.

3.3. Speech synthesis model

To evaluate the effect of enriching the phonetic representation on
the quality of synthetic speech, we trained VITS, a neural speech
synthesis model using a conditional variational autoencoder with
adversarial learning [7]. VITS could be viewed as a full end-to-
end model in that it directly converts graphemes/phonemes into
waveform. In our case, the input to the model was a sequence
of phonemes (including pauses) supplemented by punctuation
marks and phrase boundary labels as described in Section 3.2
and shown in Table 2.

In our experiments, VITS models were trained using the
AdamW optimizer [39] with β1 = 0.8, β2 = 0.99, and weight
decay λ = 0.01. The learning rate decay was scheduled by a
0.9991/8 factor in every epoch with an initial learning rate of
2 × 10−4. The batch size was set to 32 and the models were
trained up to approximately 1.3M steps (720 hours) using mixed
precision training on a single GeForce GTX 1080 Ti GPU using
the Coqui-TTS framework4.

4. Results and discussion
4.1. Listening test

Two preference listening tests (also known as AB tests), one for
the male and one for the female synthetic voice, were conducted
for a direct comparison of the investigated phenomena. Each
listening test contained the same 16 sentences that were synthe-
sized by each of the three synthesis models P0, P4, and P10 for
the two voices.

To ensure accurate labeling of the phrase breaks, we chose
the test sentences from other audio recordings we have available.
These recordings were labeled in the same way as the training
data for speech synthesis.

We selected 8 declarative sentences in a news-reading style
and 8 questions from audiobooks, in such a way as to have a
relatively balanced distribution of labels “1” to “8” (labels “0”
and “9” are naturally much more common than others). The
length of the sentences was 5-20 words.

For each voice, the listeners listened to two versions of the
same sentence synthesized by different models (P0, P4, P10). In
each test, 48 comparisons were made. 20 listeners completed the

4https://github.com/coqui-ai/TTS
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Preference: P0 vs. P10 Preference: P0 vs. P4 Preference: P10 vs. P4

model P0 same P10 score P0 same P4 score P10 same P4 score

Speaker M - questions 29.4 27.5 43.1 0.14 37.5 21.3 41.3 0.04 35.6 36.9 27.5 -0.08
Speaker M - declarative 23.1 36.9 40.0 0.17 39.4 26.9 33.8 -0.06 40.0 38.1 21.9 -0.18
Speaker M - all 26.3 32.2 41.6 0.15 38.4 24.1 37.5 -0.01 37.8 37.5 24.7 -0.13
Speaker F - questions 29.4 27.9 42.6 0.13 25.7 28.7 45.6 0.20 28.7 27.9 43.4 0.15
Speaker F - declarative 39.7 35.3 25.0 -0.15 20.6 31.6 47.8 0.27 25.7 31.6 42.6 0.17
Speaker F - all 34.6 31.6 33.8 -0.01 23.2 30.1 46.7 0.24 27.2 29.8 43.0 0.16

Both - questions 29.4 27.7 42.9 0.13 37.4 21.3 41.3 0.12 35.6 36.8 27.6 0.03
Both - declarative 31.4 36.1 32.5 0.01 30.0 29.2 40.8 0.11 32.9 34.9 32.3 -0.01
Overall preference 30.1 31.9 38.0 0.08 31.4 26.9 41.7 0.10 32.9 34.0 33.1 0.00

Table 3: Results of the preference listening tests, as preference [%] and as a score on a [-1,+1] scale with positive values preferring the
proposed systems over baseline (and P4 over P10).

first test (Speaker M) and 17 completed the second test (Speaker
F). They were instructed to evaluate each pair of synthesized
sentences on a three-point scale (better/same/worse) concerning
the quality and naturalness of prosody and intonation in the
synthesized speech. The synthetic sentences were presented
in the same order to all listeners. All the listeners were native
Czech speakers, some of whom had no prior experience with
speech synthesis, and had no hearing problems.

To ensure that only the phenomena under examination will
be evaluated, we initially synthesized a larger number of “can-
didate” sentences and filtered out those containing artifacts not
related to the research question (around 10% of synthesized
utterances from each model were discarded).

Examples of the sentences in the listening test, as well as
some of those that were discarded due to unrelated artifacts, can
be found on our demo page5.

4.2. Discussion

Table 3 presents the overall results of the listening tests, as well
as a more detailed breakdown separated by the type of sentence
(declarative or question) and the speaker. We also analyzed the
results of each listening test using the Wilcoxon signed-rank test,
with the Holm-Bonferroni correction for multiple comparisons.

The results suggest that the enriched representation (either
P4 or P10) outperforms the baseline (P0) but listener preferences
depended on the voice. For the female voice, P4 was strongly
preferred over the other two schemes. On the other hand, P10
was the preferred scheme for the male voice. All of these prefer-
ences are statistically significant at the 5% level.

Finding out why the phrasing schemes P4 and P10 behave
differently for the voices studied (e.g., whether this can be due
to differences between male and female voices and/or different
ways of the prosodic style of speaking) remains our future work.

From the detailed breakdown of the results in Table 3, it also
seems that questions were perceived differently than declarative
sentences. The greatest difference is for Speaker F, in the com-
parison between P0 and P10, though the sample size is too small
to make any definite conclusions.

The results of the listening tests show that enriching phonetic
representation with phrase boundary labels can improve the
resulting synthesized speech. However, the choice of a particular
phrasing scheme has yet to be explored.

5https://artic-tts-experiments.github.io/
demo_Interspeech2023

5. Conclusions
In the paper, we trained a phrase boundary detector from la-
beled audio data and applied it to detect phrase boundaries in
two speech datasets (of a male and female voice) for speech
synthesis. Phonetic representation enriched with the detected
phrase boundary labels was then utilized to build a neural speech
synthesis model. We tested the representation with two different
levels of resolution for the phrase breaks – either ten (P10) or
four (P4) distinct levels. In both cases, for both voices, listening
tests show a statistically significant preference for either P10 or
P4 over the baseline speech synthesis without the enriched rep-
resentation (P0). The choice of the appropriate phrasing scheme
for a particular voice remains our future work.

Although the model for phrase detection was trained using
only 42 minutes of labeled data, it can achieve very good results
[26]. In our future work, we plan to examine whether more
labeled data will result in even more accurate phrase detection
performance and, consequently, in further improvements in the
quality of synthetic speech.

The aim of the experiment described in this paper was to
test whether the enriched phrase boundaries have the potential
to improve the quality of speech synthesized by a neural speech
synthesis model. For this proof of concept, the phrase boundary
labels were obtained from existing speech recordings. Since
the enriched phrase boundaries indeed helped in improving the
quality of synthetic speech, the next step will be to predict the
phrase boundary labels solely from the textual and/or phonetic
representation at the input of a TTS system. Some work towards
this has already been done in [40].
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[17] M. Řezáčková, J. Švec, and D. Tihelka, “T5G2P: Using text-to-
text transfer transformer for grapheme-to-phoneme conversion,” in
INTERSPEECH, Brno, Czechia, 2021, pp. 6–10.

[18] K. Futamata, B. Park, R. Yamamoto, and K. Tachibana, “Phrase
break prediction with bidirectional encoder representations in
Japanese text-to-speech synthesis,” in INTERSPEECH, Brno,
Czechia, 2021, pp. 3126–3130.

[19] K. Silverman, M. Beckman, J. Pitrelli, M. Ostendorf, C. Wightman,
P. Price, J. Pierrehumbert, and J. Hirschberg, “ToBI: a standard for
labelling English prosody,” in International Conference on Spoken
Language Processing, Banff, Canada, 1992, pp. 867–870.

[20] A. K. Syrdal, J. Hirschberg, J. McGory, and M. Beckman, “Auto-
matic ToBI prediction and alignment to speed manual labeling of
prosody,” Speech Communication, vol. 33, no. 1-2, pp. 135–151,
2001.

[21] A. Rosenberg, “AuToBI - A tool for automatic ToBI annotation,”
in INTERSPEECH, Makuhari, Japan, 2010, pp. 146–149.

[22] Y. Zou, S. Liu, X. Yin, H. Lin, C. Wang, H. Zhang, and Z. Ma,
“Fine-grained prosody modeling in neural speech synthesis using
ToBI representation,” in INTERSPEECH, Brno, Czechia, 2021, pp.
3146–3150.

[23] A. Suni, J. Simko, and M. Vainio, “Boundary detection using
continuous wavelet analysis,” in Speech Prosody, 2016, pp. 267–
271.

[24] B. Schuppler and B. Ludusan, “An analysis of prosodic boundary
detection in German and Austrian German read speech,” in Speech
Prosody, 2020, pp. 990–994.

[25] B. Lin, L. Wang, X. Feng, and J. Zhang, “Joint detection of sen-
tence stress and phrase boundary for prosody,” in INTERSPEECH,
Shanghai, China, 2020, pp. 4392–4396.
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data for Wavenet-based speech synthesis,” in IEEE International
Conference on Acoustics Speech and Signal Processing, Calgary,
Canada, 2018, pp. 5684–5688.

[38] Z. Hanzlı́ček and J. Vı́t, “LSTM-based speech segmentation trained
on different foreign languages,” in Text, Speech and Dialogue, ser.
Lecture Notes in Computer Science, P. Sojka, I. Kopeček, K. Pala,
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