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Abstract
Large pre-trained language models (PLMs) have shown remark-
able performance across various natural language understand-
ing (NLU) tasks, particularly in low-resource settings. Never-
theless, their potential in Automatic Speech Recognition (ASR)
remains largely unexplored. This study investigates the poten-
tial usage of PLMs for language modelling in ASR. We com-
pare the application of large-scale text sampling and probabil-
ity conversion for approximating GPT-2 into an n-gram model.
Furthermore, we introduce a vocabulary-restricted decoding
method for random sampling, and evaluate the effects of do-
main difficulty and data size on the usability of generated text.
Our findings across eight domain-specific corpora support the
use of sampling-based approximation and show that interpolat-
ing with a large sampled corpus improves test perplexity over
a baseline trigram by 15%. Our vocabulary-restricted decod-
ing method pushes this improvement further by 5% in domain-
specific settings.
Index Terms: domain adaptation, approximation, GPT-2

1. Introduction
The advent of Pre-trained Language Models (PLMs) such as
BERT [1] and GPT-2 [2] has led to significant strides in lan-
guage processing tasks, particularly in low-resource scenarios.
These models outperform conventional neural language mod-
els such as RNNLMs and transformer-based language mod-
els (LMs) through the pre-train/fine-tune paradigm. Neverthe-
less, the potential of these models in automatic speech recog-
nition (ASR) has been insufficiently investigated. Within exist-
ing literature, several studies examine their use in lattice rescor-
ing [3, 4, 5], but their utilization in first-pass decoding remains
under-explored. This is justified to some extent, since using
PLMs directly in first-pass decoding would suffer from the same
limitation as using RNNLMs, which is computational ineffi-
ciency [6, 7].
Despite the computational bottleneck, the use of RNNLMs in
ASR has been studied extensively. In the context of first-
pass decoding, two methods using RNNLMs have been ex-
plored, namely offline and online methods [8, 9]. The of-
fline method involves approximating an RNNLM to generate
an n-gram LM that is used for first-pass decoding and the on-
line approach employs a cache to store the RNNLM states and
prunes them during decoding [10]. Several offline approaches
to approximate RNNLMs to n-grams have been explored pre-
viously [6, 8, 9, 11], but to the best of our knowledge, only
the study by [12] looks at a similar approximation for PLMs.
Their approach involves pre-training a GPT-like model on a
very large general-domain corpus, fine-tuning it on a smaller
domain-specific corpus, and then using it to generate a large

corpus for approximation into an n-gram LM. They use pre-
training corpora that have hundreds of thousands of sentences
but approximation has not been explored in a low-resource sce-
nario, where trends can vary significantly in comparison. More-
over, these approximation methods have not been studied for
GPT-2, which is much larger and more powerful than GPT
and has shown impressive few- and zero-shot capabilities [2] in
comparison. Hence, this paper explores the use of GPT-2 in ap-
proximating and augmenting n-gram LMs under low-resource
scenarios. Specifically, we compare text sampling-based con-
version and probability-based conversion as a means of approx-
imating GPT-2 in domain-specific settings. Our research con-
tributions are:

1. Comparing the efficiency of text sampling and probability
conversion in approximating GPT-2 into an n-gram model.

2. Introducing a vocabulary-restricted decoding method that im-
proves text generation in domain-specific scenarios.

3. Evaluating the competitiveness of sampling-based approxi-
mation across domain difficulty and data scarcity.

2. Data
Taskmaster-2 is a spoken dialogue corpus [13] of 17,289 con-
versations between users and call-center operators. The data
spans human conversations in six domains: restaurant-search,
food-ordering, sports, music, movies, and flights. For our ex-
periments, we combine all utterances in a call into a single sam-
ple. A train:dev:test split of 70:20:10 is used. HUB4 1996 [14]
is a broadcast news speech corpus that contains 104 hours of
transcribed speech from television networks. To simulate a
low-resource scenario, we use transcripts from the speech data
(LDC97T22) for training and the standard development and test
datasets (LDC97S66). ATCO2 is an air traffic domain cor-
pus [15] that contains air traffic communication between con-
trollers and pilots. We use the 4-hour test set for training and
the publicly released 1-hour test set for testing. We choose
these datasets to experiment with different domains, task dif-
ficulty, and resource availability. The sentence and word level
distribution across all datasets is shown in Table 1.

3. Approximating GPT-2
Existing literature supports the use of three offline methods for
approximating RNNLMs into n-gram LMs: sampling-based ap-
proximation [6], probability-based approximation [11] and it-
erative approximation [16]. We concentrate on sampling and
probability-based approximation methods for GPT-2 and briefly
describe these methods in Sections 3.1 and 3.2. We also present
a vocabulary-restricted decoding scheme that controls the do-
main drift during text generation in Section 3.3.
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Dataset #Sentences / #Words

Train Dev Test

ATCO2 2337 / 27K 537 / 6K 826 / 10k
HUB4 46573 / 735K 4178 / 65K 346 / 19K
Movies 2139 / 344K 612 / 97K 305 / 49K
Restaurant-Search 2293 / 351k 656 / 98k 327 / 49k
Music 1122 / 142K 321 / 40K 160 / 19K
Flights 1736 / 332K 497 / 96K 248 / 47K
Sports 2436 / 279K 697 / 81K 348 / 39K
Food-Ordering 735 / 80K 210 / 22K 105 / 11K

Table 1: Dataset distribution and splits.

3.1. Sampling-Based Approximation

Given a background corpus B, sampling-based approxima-
tion (SBA) involves generating additional text samples from
the same distribution as B using a language model such as
an RNNLM or Transformer-based LM. The generated text is
then used to train a traditional n-gram LM, which approximates
the probability distribution of the neural model itself [6]. The
performance of this approach is often improved by interpo-
lating the approximated n-gram LM with the baseline n-gram
LM [8, 11] trained on B. This approach has been studied with
RNNLMs [6, 8, 11] and Transformer-based LMs [12] but has
not been explored with massively pre-trained PLMs. In this
work, we study how this approximation performs with GPT-2
across datasets, data sizes, and domains.

3.2. Probability-Based Approximation

We also explore the use of probability-based approximation
(PBA) for GPT-2, which was initially proposed by [11] as a
way to approximate RNNLMs into n-gram LMs. Instead of
using count-based probabilities, this method involves extract-
ing and assigning n-gram probabilities directly from trained
RNNLMs. Since GPT-2 uses subword (BPE) tokens, we obtain
word-level probabilities by multiplying the conditional proba-
bilities of each BPE token in the target word. For a word W
composed of BPEs {w1, w2 . . . wn}, the word level probability
is computed as:

p(W |H) =
n∏

i=1

pgpt2(wi|wi−1 . . . w1H) (1)

Where H is the sentence history and pgpt2 is the conditional
probability assigned to a BPE token by the fine-tuned GPT-
2. The conditional word probabilities are reassigned to n-
gram probabilities and averaged according to the original setup.
Backing off is done from history sums taken from a trigram LM
developed from the training corpus. The authors in [11] observe
that the resulting model produces the best perplexities when un-
igram probabilities are borrowed from the baseline trigram LM.

3.3. Vocabulary-Restricted Decoding

In addition, we propose a vocabulary-constrained extension to
SBA in the PLM setup. In this approach, we restrict the pool
of BPE tokens that can be generated to the BPE vocabulary of
the training set. We start by creating a BPE vocabulary over
all words in the training data. Each word is tokenized 1 and
all composite BPEs are added to the BPE vocabulary. During

1GPT-2 tokenizes words with and without preceding blanks
(“apple” and “ apple”) differently. We add both versions into the vo-
cabulary

random sampling, softmax operations are performed only over
the BPEs in our vocabulary. The sampling algorithm is thus re-
stricted to picking from the BPEs present in this vocabulary. We
call this Vocabulary-Restricted Decoding.
We distinguish our decoding scheme from lexically constrained
decoding [17, 18], where restrictions are placed on including
specific tokens during generation. Our approach uses the train-
ing set vocabulary exclusively during decoding, thus excluding
non-relevant tokens. We expect that in domain-specific scenar-
ios, constraining the generation vocabulary will suppress tokens
and force GPT-2 to model the words in the training set better.

4. Experiments
4.1. Experimental Setup

We use the 124M parameter version of GPT-2 from
huggingface [19] for all experiments. The model is fine-
tuned with a learning rate of 5e-5 and a weight decay
of 0.01. The learning rate is linearly warmed up using
min(#train samples, 100) steps. Training is terminated us-
ing early stopping on the development set with patience of 5.
Text generation uses top-p [20] sampling with p=0.95 and a
temperature of 1.0. Unless specified otherwise, we generate 100
times the training data for all SBA experiments. The n-gram
models are trigram models with Kneser-Ney smoothing [21],
and are built and evaluated with the SRILM [22] Toolkit. KN3
denotes the baseline model trained on just the training corpora;
RS-KN3 is trained on the random-sampled corpora and VR-
KN3 on corpora sampled using vocabulary-restricted decoding.
Note that RS-KN3 and VR-KN3 are both SBA approaches with
different decoding schema. All experiments use a vocabulary
that combines all words in the training data and the 100x cor-
pora generated for RS-KN3 and VR-KN32. This results in an
OOV rate of less than 2% for each dataset.

4.2. Comparing Approximation methods

We compare the test set perplexities of the approximation ap-
proaches discussed with the “true” perplexity of a fine-tuned
GPT-2 and present the results in Table 3. Word level perplexi-
ties are obtained from GPT-2 using the computation described
in [23] and elaborated in [24]. To simplify, we add the test vo-
cabulary to the n-gram models, thus having zero OOV test rate.
Except for sports and food-ordering, both approximation meth-
ods incur at-least 2x degradation when compared to the true
perplexity but PBA incurs significantly higher deterioration in
comparison. This is consistent with previously reported results
using PBA [8, 11], but more drastic with GPT-2. This could be
explained by PLMs’ tendency to overestimate n-gram probabil-
ities in comparison to RNNLMs. A closer look confirms that
GPT-2 overestimates lower-order n-gram probabilities during
PBA because of probability sharing between higher and lower-
order n-grams. It is to be noted that the vocabulary set for GPT-
2 is BPE based and is more fine-grained than the word-level
model. We can therefore only assume that our computation for
the non-approximated GPT-2 perplexity underestimates the true
metric. Nevertheless, as the underestimated metric outperforms
the word-based model, the granularity of the vocabulary does
not interfere with our finding. We conclude that PBA is a lossy
conversion scheme for GPT-2 approximation and focus on the
more performant SBA method for the rest of this paper.

2Except in Section 4.2 where the test vocabulary is additionally in-
troduced
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Model ATCO2 HUB4 Taskmaster

Movies Restaurant Music Flights Sports Food

KN3 31.95 / 428 275.19 / 517 22.31 / 1210 23.01 / 1404 34.41 / 1269 19.50 / 556 13.24 / 639 12.62 / 296
RS-KN3 44.00 / 446 310.19 / 469 25.67 / 1004 25.09 / 1241 31.11 / 639 17.59 / 397 12.77 / 605 9.96 / 119
VR-KN3 35.53 / 445 342.72 / 452 23.54 / 980 23.34 / 1066 28.41 / 969 16.47 / 404 12.35 / 593 9.91 / 260

KN3 + RS-KN3 29.27 207.16 19.58 20.26 26.03 15.96 11.45 9.33
KN3 + VR-KN3 28.60 238.21 19.12 19.71 25.47 15.70 11.38 9.53
RS-KN3 + VR-KN3 35.21 241.74 25.92 22.96 26.64 16.34 12.19 9.49

Total Interpolation 28.54 / 415 207.32 / 337 18.91 / 795 19.54 / 955 24.38 / 440 15.53 / 249 11.29 / 583 9.10 / 98

Table 2: Perplexities and OOV rates for the n-gram models constructed from sampled corpora. KN3 denotes the trigram LM baseline.
Metrics are of the format: Perplexity/#OOV s. All perplexities are computed using the vocabulary obtained from combining all
three corpora, whose OOV rate is indicated in blue.

Dataset GPT-2 RS-KN3 PBA

ATCO2 25.04 47.04 80.04
HUB4 189.91 369.90 632.92
Movies 13.53 27.92 49.89
Restaurant-Search 13.26 28.39 46.60
Music 11.55 35.23 57.83
Flights 7.23 17.83 18.10
Sports 12.77 13.46 30.74
Food-Ordering 9.96 10.37 23.31

Table 3: Sampling-based approximation of GPT-2 into an n-
gram model consistently outperforms probability-based approx-
imation

4.3. Vocabulary Restriction and Interpolation

Table 2 compares the n-gram models developed from the train-
ing corpora and the corpora generated from random sampling
and vocabulary-restricted decoding. Except for ATCO2, both
sampling methods produce an OOV reduction on the test set.
Combining vocabularies from the original corpus and the sam-
pled corpora reduces the OOV count significantly across all
datasets. A closer look at the OOVs contributed shows that
vocabulary-restricted decoding caters to affixing and deriva-
tional inflections while random sampling has additional cover-
age over novel nouns and verbs.
In relative terms, we see that RS-KN3 under-performs the base-
line considerably (+40% ppl) with ATCO2, where the uncon-
ventional grammatical structure adversely affects sampling. On
the other hand, VR-KN3 performs strongly here with 20% im-
provement over KN3. This suggests that controlling the drift of
random sampling is beneficial in tightly constrained domains.
In general, we see that vocabulary restriction improves over ran-
dom sampling when the domain (and consequently the vocab-
ulary) is restricted. However, performance suffers with HUB4,
where the domain is wide-ranging and the vocabulary cannot
be restricted as dramatically. Vocabulary restriction also outper-
forms random sampling for all datasets in Taskmaster, where a
satisfactory equilibrium exists between grammatical complex-
ity and domain restriction.
In all cases, an improvement over the baseline is observed as
soon as either of the sampling methods is interpolated with the
baseline KN3 (interpolation weights are tuned with the respec-
tive development sets). Here again, domain specificity plays its
part, and interpolation with VR-KN3 outperforms RS-KN3 in
the case of ATCO2 while the latter performs strongly for HUB4.
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Figure 1: Benefits of sampling depends on domain difficulty.
Perplexities are normalized across the respective KN3, which
is shown as the horizontal line at 1.0. Darker colour denotes
higher perplexity on the dev-set.

Interpolation with either sampled model shows promising im-
provement with Taskmaster. We observe the best performance
across all datasets when all three models are interpolated to-
gether. On average, interpolating the baseline with RS-KN3
gives a 15% reduction in test perplexity and additional interpo-
lation with VR-KN3 decreases perplexity further by 5%. We
conclude that interpolation with a large-scale sampled corpus is
almost always beneficial for a trigram LM and is a simple and
effective method to exploit PLMs for first-pass decoding.

5. Discussion
We devote the discussion section to answering the following
question - “Can the SBA LMs outperform the baseline KN3
without interpolation?”. We isolate and study two variables that
influence augmentation: the domain of the dataset and the num-
ber of training samples available.

5.1. Domain difficulty

Comparing language modeling difficulty across two domains is
challenging in a statistical setup owing to differences in vocab-
ulary and the lack of standardized background corpora that help
isolate perplexity comparisons to domains. Sub-word model-
ing and pre-training mitigate these concerns and PLMs prove to
be ideal sandboxes to compare difficulties in modeling different
domains. Assuming that pre-training acquaints PLMs with ev-
eryday words, the adaptability of a domain over fine-tuning can
then approximate the difficulty in modeling it. We quantify it by
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Figure 2: Performance of language models across sub-sampled training corpora. Perplexities are normalized with the full-scale KN3
perplexity (which is shown as the blue dotted line at 1.0). The Taskmaster datasets are averaged to generate one plot.

computing the dev set perplexities of fine-tuned3 GPT-2 models
and compare them across domains to rank their difficulty. Fig-
ure 1 shows the trend in test perplexity with an increase in the
number of sampled sentences for RS-KN3. The figure shows
that HUB4 and ATCO2 are both difficult for GPT-2 to model,
but HUB4’s steeper slope suggests a preference for additional
sampling when domains are spread thin. In most cases, we see
that an increase in the number of samples generated correlates
with a decrease in test perplexity. Larger sampling has a slower
effect on perplexity after a certain point and produces long tails
afterward. For datasets that have a lower dev set perplexity,
SBA is seen to beat the baseline KN3 early on. An increase in
domain difficulty stretches the cross-over point and we see that
the number of sentences required to outmatch the baseline is
proportional to the difficulty of the domain. We observe similar
trends for VR-KN3 models as well, with a slight downward shift
along the y-axis for all curves (except for HUB4, where the shift
is slightly upwards). This analysis provides us with two conclu-
sions: 1) Generating additional data correlates with reductions
in test perplexity, but 2) The amount of generated data required
to match the baseline trigram model has an inverse relation with
domain difficulty.

5.2. Few-Shot Approximation

This section compares the responses of SBA and the baseline
KN3 under low-resource settings. We simulate few-shot scenar-
ios by sub-sampling the train and development corpora while
keeping the test corpus unchanged. For each setting, GPT-2
is fine-tuned on the sub-sampled training set, using the sub-
sampled development set for early stopping. The fine-tuned
model then generates 100x the size of the sub-sampled train
set. The resulting perplexities are normalized with the full-scale
KN3 value for each dataset (refer to Table 2). Each experiment
is run across three random seeds and the results are plotted in
Figure 2.
The results for ATCO2 reflect the domain difficulty yet again,
with GPT-2 struggling to understand the domain in few-shot
settings and the trigram model performing significantly better.
GPT-2 does not outperform the trigram corpus in any data sce-
nario, and the interpolated model hugs the KN3 curve. For
Taskmaster and HUB4 on the other hand, the generated corpus
fares significantly better in few-shot scenarios. The perplex-
ity of the generated corpus is several times lower than the sub-
sampled KN3 model when the number of samples available is
less than 100. This can be attributed to large-scale pre-training,

3Perplexity from a pre-trained model could be misleading since the
domain might look hard initially but be easily learnable.

which helps the PLM generalize text quicker than a KN3 under
low resource settings. However, the KN3 curve has a steeper
decline, which suggests that the it benefits more from the avail-
ability of additional curated corpora than a PLM in few-shot
scenarios. We also see that the improvements produced with
the additional 100x data become decreasingly pronounced with
increasing train data size. i.e., once the training data is large
enough to generalize the domain well, the baseline KN3 be-
comes a tough competitor. For HUB4, the sub-sampled KN3
even outperforms the generated corpus for train sets larger than
20K samples. Improvements can be made by generating expo-
nentially many samples even at “high” resource settings, but the
cost-benefit ratio is significantly more encouraging in few-shot
settings. This is in contrast to [9], where larger training data re-
sulted in larger gains for word-based RNNLM models. We con-
clude that in domain-specific settings, although PLMs demon-
strate impressive generational capabilities under few-shot con-
ditions, n-gram models are tough baselines in comparatively
higher-resourced scenarios.

6. Conclusion
In this work, we compare two approaches that approximate
GPT-2 into an n-gram model and find that large-scale sampling
after fine-tuning performs significantly better than a probability-
based approximation. We then introduce a vocabulary-
restricted decoding schema that proves helpful in low-resource
domain-specific scenarios. We show that interpolating the base-
line trigram LM from a domain-specific corpus with trigrams
made from large-scale generation improves text perplexity by
20% across eight domains. Using dev set perplexity to com-
pare domains, we show that the sampling volume required to
match the baseline trigram perplexity is inversely proportional
to the domain modeling difficulty. We also extend text-based
augmentation to few-shot scenarios, where we see impressive
performance with GPT-2. However, we find that the cost ben-
efit ratio declines rapidly with additional training data and that
the trigram model is a tough baseline at higher data sizes.
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cour, M. Rigault, K. Choukri, A. Prasad, S. S. Sarfjoo, I. Nig-
matulina et al., “Atco2 corpus: A large-scale dataset for re-
search on automatic speech recognition and natural language un-
derstanding of air traffic control communications,” arXiv preprint
arXiv:2211.04054, 2022.

[16] E. Arısoy, S. F. Chen, B. Ramabhadran, and A. Sethy, “Converting
neural network language models into back-off language models
for efficient decoding in automatic speech recognition,” in 2013
IEEE International Conference on Acoustics, Speech and Signal
Processing, 2013, pp. 8242–8246.

[17] C. Hokamp and Q. Liu, “Lexically constrained decoding for
sequence generation using grid beam search,” arXiv preprint
arXiv:1704.07138, 2017.

[18] J. E. Hu, H. Khayrallah, R. Culkin, P. Xia, T. Chen, M. Post,
and B. Van Durme, “Improved lexically constrained decoding
for translation and monolingual rewriting,” in Proceedings of the
2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), 2019, pp. 839–850.

[19] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. Le Scao,
S. Gugger, M. Drame, Q. Lhoest, and A. Rush, “Transformers:
State-of-the-art natural language processing,” in Proceedings of
the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations. Online: Association for
Computational Linguistics, Oct. 2020, pp. 38–45. [Online].
Available: https://aclanthology.org/2020.emnlp-demos.6

[20] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi,
“The curious case of neural text degeneration,” arXiv preprint
arXiv:1904.09751, 2019.

[21] S. F. Chen and J. Goodman, “An empirical study of smoothing
techniques for language modeling,” Computer Speech & Lan-
guage, vol. 13, no. 4, pp. 359–394, 1999.

[22] A. Stolcke, “Srilm-an extensible language modeling toolkit,” in
Seventh international conference on spoken language processing,
2002.

[23] S. J. Mielke, “Can you compare perplexity across different
segmentations?” Apr 2019. [Online]. Available: https:
//sjmielke.com/comparing-perplexities.htm

[24] R. Cotterell, S. J. Mielke, J. Eisner, and B. Roark, “Are all
languages equally hard to language-model?” in Proceedings
of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers). New Orleans, Louisiana:
Association for Computational Linguistics, Jun. 2018, pp. 536–
541. [Online]. Available: https://aclanthology.org/N18-2085

375


