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Abstract
In this work we present an adaptation method for personalized
acoustic scene classification in ultra-low power embedded de-
vices (EDs). The computational limitation of EDs and a large
variety of acoustic scenes may lead to poor performance of the
embedded classifier in specific real-world user environments.
We propose a semi-supervised scheme that estimates the audio
feature distribution at ED level and then samples this statisti-
cal model to generate artificial data points which emulate user-
specific audio features. Then, a second, cloud-based classifier
assigns pseudo labels to samples, which are merged with exist-
ing labeled data for retraining the embedded classifier. The pro-
posed method leads to significant performance improvements
on user-specific data sets and does neither require a persistent
connection to a cloud service nor the transmission of raw audio
or audio features. It thus results in low data rates, high utility,
and privacy-preservation.
Index Terms: acoustic scene classification, embedded devices,
semi-supervised learning, data augmentation

1. Introduction
Data-driven and machine-learning (ML) based audio classifica-
tion systems are widely used in stationary and mobile embed-
ded devices (EDs) like smart-home assistants or smartphones.
These classifiers assign audio recordings to certain, predefined
classes related to acoustic scenes and environments [1, 2, 3].
They have to cope with a large variety of acoustic environments
which range, for instance, from living room activities (listening
to radio, watching TV), to driving to work (car, street, train),
to sports (jogging outside in the park), and many more. The
focus of this work is on acoustic scene classification (ASC) in
ultra-low power EDs such as hearing aids or cochlear implants.
Here, scarce computational resources have to be shared between
many (real-time) tasks, limiting the computational complexity
available for ASC to low-dimensional feature vectors and less
than 103 parameters in the embedded classifier.

In this scenario, the vast amount of real-life acoustic con-
ditions leads to potentially poor classification performance. As
shown in Fig 1, the intersection of a large and diverse training
set and frequently-seen user-specific acoustic environments can
be small. Since the embedded classifier will not perform at its
best when it is overloaded with a large variety of acoustic con-
ditions, it is beneficial to use a reduced training set which just
contains the most relevant acoustic data of typical ED users.
However, when the training data is tailored to typical ED users,
it works well in matched conditions but may degrade severely
in unknown acoustic environments.

The main goal of the proposed method is to adapt a baseline
classification system to personal user conditions, while adher-

Figure 1: Left: When the intersection of the training data (red)
and the acoustic scenes of an ED user (blue) is rather small,
it may lead to sub-optimal classification performance (’X’) in
some cases. Right: As a consequence, a reduced baseline set
is used for training. Now, the acoustic scenes of a second user,
which are not covered by the baseline set, are detected poorly.

ing to the following constraints: (1) very low data rates and no
persistent connection from the ED to a back-end device, (2) no
user feedback on the performance of the classifier in the ED,
and (3) no transmission of raw audio or high-resolution audio
features. Constraints (1) and (2) result in a high utility of the
proposed method and limit the power consumption of the ED
while (3) preserves the user’s privacy.

The proposed adaptation scheme improves the performance
in user-specific scenes via data aggregation in the ED, data aug-
mentation, and re-training in a back-end device (a.k.a. ”cloud”).
In particular, we aggregate audio features at ED level and for-
mulate a Gaussian mixture model (GMM) that represents the
underlying feature distribution related to the specific user. Then,
at certain points in time (e.g., once every night), the acquired
statistical parameters are transmitted to the more powerful back-
end device. Here, the received GMM is sampled to generate ar-
tificial data points, which emulate user-specific audio features.
Therefore, the back-end device also uses a second powerful
DNN classifier to assign pseudo labels to the generated samples.
After adding these samples to the baseline data, the embedded
classifier is then retrained and thus provides improved personal-
ization of the device. In what follows, we describe the compo-
nents of this approach and their interactions in detail and ana-
lyze its performance w.r.t. the accuracy of the statistical model.

2. Related work
The proposed procedure is closely related to semi-supervised
learning (SSL), where usually a larger amount of unlabeled
and a limited amount of labeled data are jointly used in ML
tasks [4]. SSL is applied in many applications such as im-
age classification [5, 6] or text classification [7, 8], and is also
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Figure 2: Overview of the core elements in our SSL training
scheme. The ED-based classifier is retrained on a combination
of labeled training data and pseudo-labeled artificial samples.
These samples are generated based on statistical moments and
represent the acoustic environments of the ED user.

increasingly applied to ASC [9, 10]. Mainly, SSL methods
which are directly comparable to our work are wrapper meth-
ods, where one or multiple classifiers assign pseudo labels to
unlabeled data, which can then be used for supervised train-
ing [11]. Two well-known methods are self-training [12, 13],
using only one classifier that is pre-trained with labeled data
and then retrained after generating pseudo-labeled data, and co-
training [14, 15], where two classifiers are iteratively trained
via an exchange of pseudo-labeled data. Furthermore, there are
methods where un- or semi-supervised clustering techniques are
used to assist the training process [16, 17].

While some parts of the proposed method are related to
known SSL methods, the main novelties of our work are (1)
the local aggregation of low-dimensional audio features which
results in a statistical model describing the user’s acoustic en-
vironment and (2) the use of this statistical model to generate
artificial audio features which are then labeled and used for re-
training the classifier in the ED. To the best of our knowledge,
no other works have considered such a combination of statisti-
cal data acquisition, data augmentation, and SSL. In addition,
we demonstrate that a statistical model of moderate complexity
is sufficient to achieve notable improvements.

Note that low-complexity ASC solutions were also inves-
tigated within the DCASE [18, 19]. However, the footprint of
DCASE solutions is at least one magnitude larger than with our
approach. Therefore, ASC in assistive hearing devices usually
discriminates only between a few major signal classes [20].

3. Method description
The main goal of the proposed method is to improve the user-
specific ASC performance of a computationally constrained
embedded classifier. We consider the framework in Fig. 2,
which mainly consists of the embedded classifier C1 and an
assisting powerful, DNN-based classifier C2 that could, for in-
stance, be implemented in a cloud-based server application or a
mobile device. More information on the structure of the clas-
sifiers and the related training is provided in Sec. 4.3, and a
detailed description of the proposed framework is given below.

3.1. Feature extraction and aggregation in the ED

We employ amplitude-modulation-spectrum (AMS) based low-
level audio features [21], which had been specifically designed
for ultra-low power devices. Efficient implementation of these
features is achieved through the use of 2 banks of recursive
filters with optimized filter bandwidths. We extract one nine-
dimensional AMS feature vector z from two seconds of au-
dio and concatenate 5 consecutive feature vectors into a 45-
dimensional input vector x for our classifiers, thus performing
one classification per 10 s. The set of audio feature sequences
x in the ED of a specific user is then denoted as user data U :

U = {x 1, x 2, x 3, . . . xM}, (1)

with
x t =

(
z T
t1, z

T
t2, z

T
t3, z

T
t4, z

T
t5

)T
. (2)

The number of sequences M in U is not fixed but rather re-
lated to the user-specific time span between initialization of
the ED (”baseline”) and the aspired re-configuration of C1,
which could, e.g., cover one day (M = 8640) or one week
(M = 60480). As we do not like to transmit audio features z
directly for further processing, we aggregate the sequences x in
U and derive statistical information about the underlying data
distribution. However, in this first proof-of-concept work, we
aim to study the required accuracy of the statistical model and
therefore employ a GMM at ED level. Thus, we use the whole
set U which, in principle, could be stored in the ED’s mem-
ory since the feature vectors z are low-dimensional. Other, less
complex procedures are possible as well and will be discussed
in Section 6. The GMM is defined as

p(x ) =
N∑

i=1

αiN (x ,µi,Σ i) , (3)

with mean vectors µi, covariance matrices Σ i, and weights αi.
Depending on the number of components N , the GMM is ex-
pected to provide a more or less accurate and versatile statistical
representation of U . Due to the mentioned restrictions, we only
consider diagonal covariance matrices in this work.

3.2. Data augmentation and classifier re-configuration

As indicated earlier, our method includes a back-end applica-
tion that assists the ED and provides updates for classifier C1.
After receiving the model parameters that have been computed
at ED-level, the GMM is statistically sampled in order to gen-
erate A artificial data points

Uart = {x art
1 , x

art
2 , x

art
3 , . . . , x

art
A}, (4)

which emulate sequences of audio features x based on the
acoustic environments of the ED user. As shown in the lower
part of Fig. 2, a DNN-based classifier C2 is used to assign
pseudo-labels to the artificial data samples Uart. Only samples
that are classified with at least 75% certainty are kept until the
desired numberA is reached. Afterwards, Uart is combined with
the baseline training data and the resulting set is used to re-
train C1. This process adapts the embedded classifier to user-
specific, personalized acoustic conditions. Finally, the updated
parameters of C1 will be transmitted to the ED.

4. Experimental setup
4.1. Database

In line with the mentioned restrictions on computational com-
plexity, we consider four target classes: ”noise”, ”music”,
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Table 1: Definition of data sets. Brackets indicate the included amount
of classes/genres from AudioSet [22]. Abbreviations: ”D” = domestic
sounds, ”O” = outside/natural sounds, ”P” = pop, ”R” = rock, ”H” =
hip hop, ”E” = electronic, ”C” = classical, ”J” = jazz.

Data set Noise types Music genres Files
Compreh. various [46 cl.] various [11 genr.] 10314
Baseline D [13 cl.] P, R, H, E 3023

U1 D [13 cl.] P, R, H, E 2825
U2 mostly D [14 cl.] P, E 1902
U3 mostly O [11 cl.] P, R 1864
U4 O [9 cl.] J, C 1991

”speech”, and ”speech plus noise” (SpN). Nevertheless, in or-
der to cover a broad variety of acoustic environments, we make
use of the Google AudioSet [22] which contains over two mil-
lion snippets from YouTube videos of 10 s length. Hereby, parts
from the ”balanced train”, ”unbalanced train”, and ”evaluation”
sets are used at a sampling rate of 16 kHz. For downloading files
from the AudioSet, parts of the code provided by [23] are em-
ployed. For classes ”noise” and ”music”, the AudioSet files are
used directly. As AudioSet occasionally provides ambiguous
labels (a specific label only indicates that a certain sound type
occurs somewhere in the 10 s snippet), we use non-overlapping
parts of 10 s length from the MUSAN database [24] speech files
and mix them with noise files from AudioSet for the classes
”speech” (mixed at 25 to 40 dB SNR) and ”SpN” (mixed at -10
to 10 dB SNR). Additionally, we define the ratio of maximum
energy across signal segments s[l, k] and average signal energy
of signal s[k] as λs:

λs =
max

l

∑K
k=1 s

2[l, k]

1
L

∑L
l=1

∑K
k=1 s

2[l, k]
, (5)

with sample index k, segment index l, segment length K =
4000, and number of segments L = 40. We sort out all files
from AudioSet with λs > 5 as this indicates files with only
short energy peaks and thus implies a label assignment that is
not representative for the full file.

4.2. Data sets for training, evaluation, and aggregation

We define several data sets with different contents for specific
purposes. For this work we select a fraction of the 632 avail-
able audio event classes from the Google AudioSet (49 different
noise types and 11 popular music genres, which are not listed
in detail due to space limitations) and provide a brief overview
of the contents in Tab. 1. The ”comprehensive” set contains
all considered sound types and music genres and roughly 2500
files for each of the four target classes. Note that the assisting
classifier C2, which is used for labeling the artificial user data,
is always trained with the comprehensive data set. The ”base-
line” set is a consolidated version of the comprehensive set, only
containing domestic environments and four of the most popular
music genres. It emulates the acoustic conditions of a typical
ED user. Both sets (comprehensive and baseline) are split into
train (50%), validation (10%), and evaluation (40%) subsets.
For the investigation of user-specific acoustic scenarios we de-
fine four user profiles (”U1”-”U4”) with unique characteristics
and gradually increasing differences w.r.t. the baseline set. All
user sets consist of an evaluation subset and aggregation data
(50/50-split) which is used for training the user-specific GMM
at ED level.

Table 2: Architecture of the lightweight ED-based classifier C1.

Input Operator Nodes Act. Param.
1×45 BatchNorm - - 90
1×45 Dense 9 ReLU 414
1×9 Dense 4 Softmax 40

Table 3: Architecture of the powerful classifier C2, mainly consisting of
a preprocessing block (the first three operators) and the MobileNet V2
[25], and a softmax layer.

Input Operator Nodes Act. Param.
5×9 Dense 224 ReLU

3590224×5 Dense 224 ReLU
224×224×1 Conv2d 3 ReLU
224×224×3 Mob.Net - - ≈3.5 M

1×1000 Dense 4 Softmax 4004

4.3. Classifier architectures and training schedules

The embedded classifier C1 consists of two small dense lay-
ers with only 544 parameters in total as shown in Tab. 2.
For the powerful, DNN-based classifier C2 we use the Mo-
bileNet V2 [25] as core element, complemented by a prepro-
cessing block and a final softmax layer (cf. Tab. 3). Note that
C2 processes the input sequences x as a 5x9-dimensional ma-
trix rather than the 45-dimensional vector representation. Ob-
viously C2 is much larger than C1 with more than 3.5 million
parameters - while still being small enough so that the back-end
application could be implemented in a mobile device. C1 is
trained over 250 epochs using an Adam optimizer [26] with an
empirically determined learning rate of 0.008 with a dropout of
0.05 being applied at the first layer. For C2, we start with the
implementation from PyTorch [27] and fine-tune with our data
over 250 epochs using the Adam optimizer and a learning rate
of 0.001. Here, we apply a mix-up training schedule [28] in or-
der to prevent overfitting and to achieve better robustness. The
GMMs are trained using an expectation-maximization (EM) al-
gorithm, treating each feature sequence as 45-dimensional vec-
tor. After generating the same number of artificial data samples
as in the train/validation subsets of the baseline data, we re-
shape the 45-dimensional samples back into 5x9-dimensional
sequence matrices so that C2 can assign pseudo-labels. For the
retraining process of C1, we repeat the initial training schedule
with a combination of baseline data and artificial samples.

4.4. Experiments

We investigate the classification performance of the embedded
classifier C1 evaluated on the user-specific data sets that are in-
troduced in Sec. 4.2. First, we consider users U1 and U2 in
order to demonstrate the benefit of using our baseline system
rather than a classifier that has been trained with the comprehen-
sive training set. Subsequently, based on the findings in Sec. 5.1
we consider our baseline system as a starting point and person-
alize the classifier for U3 and U4. Hereby, we consider GMMs
of increasing complexity in terms of underlying components N
and compare the performance on the evaluation subsets of the
user data. In addition to the overall classification accuracy we
specifically evaluate the class ”noise”, which is considered to
be most representative for the users’ acoustic environments.

We display the statistical distribution of our evaluation re-
sults gained from ten training repetitions on the same data as
box plots where the whiskers cover 100% of the results. Addi-
tionally, we indicate the performance of C2 on the respective
user data as a blue dashed line (cf. Fig. 4).
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Figure 3: Effect of using a baseline system (”B.”) with reduced
training set over a system trained with a comprehensive data set
(”comp.”), evaluated for users U1 and U2.

5. Results and discussion
5.1. Baseline classification performance

In Fig. 3 we display the classification accuracy of the embedded
classifier C1 evaluated on data of two typical users, U1 and U2.
We compare a system trained on the comprehensive data set (cf.
Sec. 4.2) with the previously defined baseline system which has
been trained with a consolidated training set. Overall, we find
a slight advantage for the baseline system which is more signif-
icant in the case of U1, as the underlying acoustic conditions
in the training data sets are very similar. For U2, we observe
marginal improvements when using the baseline system. These
results indicate that the baseline classifier should not necessar-
ily be trained on highly diverse data sets (e.g., including all pos-
sible musical genres and styles) but should rather focus on the
most common acoustic situations. Since U1 represents a typical
ED user in this work, we consider the above baseline system as
the starting point for the adaptation of the embedded classifier
C1 in the following experiments.

5.2. User-specific personalization of classifier C1

The two user profiles U3 and U4 are designed to represent
acoustic conditions clearly different from the baseline training
data (see Sec. 4.2). In the upper part of Fig. 4 we display the
overall classification accuracy for the two user sets given the
baseline system and several personalized versions of C1. As ex-
pected, we find a decrease of the baseline performance for both
users compared to the previously presented results of U1 and
U2. However, after applying the proposed (privacy-preserving)
personalization method, we can observe a significant perfor-
mance improvement. When using only very few GMM com-
ponents for feature aggregation (N ≤ 2), we observe a slight
decrease of performance. A single Gaussian (with diagonal co-
variance) is clearly not sufficient to model the feature space. For
more complex models with N ≥ 16 we find improvements of
more than 10% compared to the baseline. Note that we achieve
similar results with diagonal covariance matrices and N = 32
and a GMM of order N = 4 using full covariance matrices.
However, as the latter model requires three times more parame-
ters, we show results only for diagonal covariance matrices.

In the lower part of Fig. 4 we display the results specifi-
cally for the class ”noise” which we consider to be most repre-
sentative for a user’s acoustic environment. As data sets of U3
and U4 contain entirely different noise types as compared to the
baseline set, we consequently observe initial accuracies lower
than 45% for both users. After the application of the GMM-
based personalization, however, the performance is significantly
improved even when only four components are used (N = 4).
IncreasingN beyond four does not seem to provide a significant
advantage here.

Overall, results in Fig. 4 indicate that a sufficiently accurate
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Figure 4: ASC performance of the baseline system (”B.”) com-
pared to personalized classifiers with increasing GMM com-
plexity, evaluated for users U3 and U4.

description of the underlying distribution of the user-related au-
dio feature space is required. It is also apparent that increasing
the model complexity leads to a better performance of the pro-
posed method with only minor gains beyond N = 32. Hereby,
the performance of classifier C2 seems to set an upper bound
for the performance of the embedded classifier.

6. Conclusions and outlook
In this work, we have presented a privacy-preserving method
for improving ASC performance in ultra-low power EDs such
as assistive hearing devices. The method capitalizes on user-
specific data through feature aggregation in the ED, data aug-
mentation via resampling, and by incorporating a powerful
cloud-based classifier.

At the outset, we have shown that for the small foot-print
embedded classifier, it can be beneficial to use a consolidated
(baseline) training set which covers the most relevant user
scenes but not the full range of all available scenes and signals.

Then, the proposed adaptation method may strongly im-
prove the baseline system for users with deviating specific data
sets. Since we use diagonal covariance matrices, the required
statistical model for achieving significant improvements is of
moderate complexity.

In fact, the success of our GMM-based approach suggests
the use of alternative, low-complexity methods. Instead of com-
puting a full-fledged GMM on the ED, the aggregation process
could be controlled, for instance, via additional information on
the user’s daily activities such that the statistical model on the
ED can be further simplified. Thus, in future works, we strive
to eliminate the necessity for computing a GMM through ag-
gregation methods which rely on auxiliary information gathered
in the ED, and will investigate strategies for the back-end sup-
ported adaptation of the personalized classifier over longer pe-
riods of time.
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