
CleanUNet 2: A Hybrid Speech Denoising Model on
Waveform and Spectrogram

Zhifeng Kong∗‡ , Wei Ping†, Ambrish Dantrey†, Bryan Catanzaro†

‡UCSD †NVIDIA

Abstract
In this work, we present CleanUNet 2, a speech denoising model
that combines the advantages of waveform denoiser and spectro-
gram denoiser and achieves the best of both worlds. CleanUNet 2
uses a two-stage framework inspired by popular speech synthesis
methods that consist of a waveform model and a spectrogram
model. Specifically, CleanUNet 2 builds upon CleanUNet, the
state-of-the-art waveform denoiser, and further boosts its per-
formance by taking predicted spectrograms from a spectrogram
denoiser as the input. We demonstrate that CleanUNet 2 out-
performs previous methods in terms of various objective and
subjective evaluations. 1

Index Terms: speech denoising, speech enhancement

1. Introduction
Speech recorded in real world scenarios may contain various
background noise. Examples are audio-video conferences, au-
tomatic speech recognition, and hearing aids. To tackle this
problem, speech denoising techniques [1] aim to remove such
noise and then output perceptually high-quality speech signals.

Speech denoising methods have been studied for decades,
ranging from traditional signal processing methods [2, 3] to
machine learning methods [4, 5]. In recent years, deep neural
networks [6, 7] have achieved state-of-the-art (SOTA) results
because of large model capacity to process large-scale training
data [8]. In these models, speech denoising is usually consid-
ered as a regression task: the networks are trained to directly
predict clean speech given noisy speech as inputs. These models
mainly fall into two categories: spectrogram-based methods and
waveform-based methods.

Most speech denoising methods are spectrogram-based [7,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. These methods first
extract noisy spectral feature (such as magnitude of spectrogram
or complex spectrum). Then, they predict a mask for modulation
(e.g., the ideal ratio mask [20]) or the spectral feature of clean
speech. The final step is to generate waveform based on the
predicted mask or spectral feature with other information (such
as phase) extracted from the noisy speech. These methods work
well under moderate noise levels, but will have noticeable noise
leakage under high noise levels mostly due to inaccurate phase
estimation from noisy speech.

Waveform-based methods, in contrast, directly predict the
waveform representation of clean speech from the noisy wave-
form [21, 22, 23, 24, 25, 26, 27]. Most waveform-based methods
use WaveNet [28] or U-Net [29] as backbone, with different
sub-modules such as dilated convolutions [30, 25], stand-alone
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WaveNet [24], LSTM [26], and self-attention [31, 27]. The state-
of-the-art waveform-based methods are able to prevent noise
leakage well even under high noise levels, and have achieved
SOTA objective and subjective evaluations [27]. However, there
is usually some speech quality degradation under high noise
levels (i.e., the denoised speech sounds less natural). We find
scaling these models to larger networks does not improve speech
quality.

In order to further boost denoising quality, we propose to
combine the advantages of spectrogram and waveform-based
methods. In this paper, we introduce a hybrid speech denoising
model called CleanUNet 2. It uses both a spectrogram-based de-
noiser and a waveform-based denoiser as sub-modules. By doing
this combination, we hope the model can prevent noise leakage
while keeping good sound quality at the same time even under
high noise levels. Inspired by the popular two-stage speech syn-
thesis methods [32, 33] that consist of a waveform model (i.e.,
neural vocoder) and a spectrogram model (i.e., acoustic model),
we use CleanUNet [27] as our waveform-based sub-module, and
introduce CleanSpecNet as our spectrogram-based sub-module.
Both of them use convolution layers and self-attention blocks
[31] in their architecture. We conduct a series of studies on
different architecture design, STFT resolutions, and loss func-
tions. Results show that our hybrid model can outperform SOTA
speech denoisers in both objective and subjective evaluation
metrics.

2. Model
2.1. Preliminaries

We aim to develop a speech denoiser x̂ = f(xnoisy) that extracts
clean human speech from noisy audio recorded by a single chan-
nel microphone. That is, the noisy speech xnoisy ∈ [−1, 1]T is
represented as waveform of length T . In order to perform de-
noising in online streaming applications such as video meetings,
we let the model f , and therefore each component of the model,
to be causal: x̂t is a function of prior noisy waveform xnoisy

1:t .
We consider the scenario where xnoisy = x + ϵ is a mixture
of clean speech x and background noise ϵ. We would like the
denoised speech x̂ = f(xnoisy) to sound identical to x.

2.2. The Hybrid Model

Motivation. We note that spectrogram and waveform-based
models are “complementary” under high noise levels. Specifi-
cally, spectrogram-based models can preserve good speech qual-
ity, but there is noise leakage (e.g., due to inaccurate phase
information extracted from noisy audio) [27]. On the other hand,
waveform-based models are good at removing noise, but may
produce degraded speech (see examples on demo website). To
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Figure 1: Schematic diagram of CleanSpecNet.

combine the advantages of these two types of models, we pro-
pose a hybrid model for the speech denoising task.
Framework. The hybrid model consists of two main networks:
a spectrogram-based denoiser, and a waveform-based denoiser.
The spectrogram-based denoiser, called CleanSpecNet, takes the
noisy (linear) spectrogram ynoisy as input, and outputs ŷ to pre-
dict the clean spectrogram y. Then, the waveform-based model
takes the noisy waveform as input and predicted spectrogram as
conditioner (analogous to flow-based neural vocoder [34, 35]),
and predicts the clean waveform. We use CleanUNet [27] archi-
tecture as a main component in our waveform-based model, thus
we name the hybrid model as CleanUNet 2. It is flexible and can
be easily combined with any spectrogram-based denoiser.
Training. We first train the spectrogram-based denoiser. Then,
we train the waveform-based denoiser given the predicted spec-
trogram from the spectrogram-based denoiser. Training wave-
form model on predicted spectrogram has been found beneficial
in speech synthesis, as it reduces error propagation in the two-
stage system [33].

2.3. CleanSpecNet

Architecture. CleanSpecNet is composed of a stack of convo-
lutional layers followed by a stack of self-attention blocks [31].
Each convolutional layer is composed of an 1-D convolution
(Conv1d) that keeps channels, rectified linear unit (ReLU), an-
other Conv1d that doubles channels, and a gated linear unit
(GLU). Each Conv1d has kernel size = K and stride = 1. Each
self-attention block contains: i) a multi-head self-attention layer
with 8 heads, 512 model dimensions, and a causal attention mask,
and ii) a position-wise fully-connected layer. The architecture is
shown in Fig. 1.
Loss Function. Let s(x; θ) = |STFT(x; θ)| be the mag-
nitude of the linear spectrogram of waveform x, where θ is
the set of hyperparameters used to compute STFT: the hop
size, the window length, and the FFT bin. Let θspec be the
corresponding hyperparameters for CleanSpecNet. We use
s(·; θspec) to transform noisy waveform xnoisy to noisy spec-

Figure 2: Schematic diagram of CleanUNet 2.

trogram ynoisy = s(xnoisy; θspec), and clean waveform x to
clean spectrogram y = s(x; θspec). Then, the loss function is

1

Tspec
∥ log(y/ŷ) ∥1 + ∥ y − ŷ ∥F

∥ y ∥F
, (1)

where Tspec = ⌊ T
hop size

⌋ is the length of spectrogram.

2.4. CleanUNet 2

Architecture. We use the CleanUNet proposed in [27] as the
waveform-based module. It is composed of encoder layers, self-
attention blocks as bottleneck, and decoder layers that connect
with encoder layers by skip connections. After we compute
denoised spectrogram with CleanSpecNet, we up-sample it 256
times through 2 transposed 2-d convolutions (stride in time = 16,
2-D filter sizes = (32, 3)), each followed by a leaky ReLU with
negative slope α = 0.4. Then, we combine noisy waveform
and up-sampled spectrogram through a conditioning method and
feed them into CleanUNet. The architecture is demonstrated in
Fig. 2. We use element-wise addition as our main conditioning
method. Other methods such as concatenation on channels, or
FiLM [36] lead to similar results (see Section 3.2).
Loss Function. Similar to CleanUNet [27], we use the addition
of ℓ1 waveform loss ∥ x− x̂ ∥1 + and multi-resolution STFT
losses [37] as the loss function to train CleanUNet 2. In detail,
the full-band multi-resolution STFT loss is

m∑

i=1

(∥ s(x; θi)− s(x̂; θi) ∥F
∥ s(x; θi) ∥F

+
1

T
∥ log

s(x; θi)

s(x̂; θi)
∥1
)
, (2)

where {θ1, · · · , θm} are STFT hyperparameters for m different
resolutions. The high-band loss replaces s(x) with sh(x), which
contains the high frequency half of s(x) (for example, 4-8kHz
range for 16kHz audio). The high-band loss can reduce low
frequency noises during silence and thus improve actual sound
quality [27].
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Table 1: Objective and subjective evaluation results for denoising on the DNS no-reverb testset.

Model Domain PESQ PESQ STOI pred. pred. pred. MOS MOS MOS
(WB) (NB) (%) CSIG CBAK COVRL SIG BAK OVRL

Noisy dataset - 1.585 2.164 91.6 3.190 2.533 2.353 - - -
DTLN [18] Time-Freq - 3.04 94.8 - - - - - -
PoCoNet [19] Time-Freq 2.745 - - 4.080 3.040 3.422 - - -
FullSubNet [17] Time-Freq 2.897 3.374 96.4 4.278 3.644 3.607 3.97 3.72 3.75
Conv-TasNet [38] Waveform 2.73 - - - - - - - -
FAIR-denoiser [26] Waveform 2.659 3.229 96.6 4.145 3.627 3.419 3.68 4.10 3.72
CleanUNet (ℓ1+full) [27] Waveform 3.146 3.551 97.7 4.619 3.892 3.932 4.03 3.89 3.78
CleanUNet (ℓ1+high) [27] Waveform 3.011 3.460 97.3 4.513 3.812 3.800 3.94 4.08 3.87
CleanUNet 2 (ℓ1+full) Hybrid 3.262 3.658 97.7 4.661 3.976 4.030 4.11 3.92 3.86
CleanUNet 2 (ℓ1+high) Hybrid 3.146 3.592 97.6 4.553 3.934 3.904 4.02 4.10 4.01

Table 2: Ablation study of CleanSpecNet with different STFT parameters and its impact on CleanUNet 2.

Spectrogram Hyperparameters Model PESQ PESQ STOI pred. pred. pred.
Window Length Hop Size FFT Bin (WB) (NB) (%) CSIG CBAK COVRL

1024 256 1024 CleanSpecNet 2.874 3.261 96.2 4.388 3.455 3.649
CleanUNet 2 3.262 3.658 97.7 4.661 3.976 4.030

512 256 512 CleanSpecNet 3.048 3.491 96.2 4.500 3.565 3.805
CleanUNet 2 3.257 3.651 97.7 4.659 3.969 4.025

320 80 320 CleanSpecNet 3.071 3.565 97.0 4.526 3.679 3.847
CleanUNet 2 3.166 3.571 97.6 4.606 3.925 3.944

Table 3: Study on denoising effect of non-causal models on the DNS no-reverb testset.

Spectrogram Hyperparameters Model PESQ PESQ STOI pred. pred. pred.
Window Length Hop Size FFT Bin (WB) (NB) (%) CSIG CBAK COVRL

1024 256 1024
CleanSpecNet 2.925 3.289 96.3 4.437 3.483 3.700

CleanUNet 2 (ℓ1+full) 3.349 3.698 97.8 4.711 4.036 4.110
CleanUNet 2 (ℓ1+high) 3.319 3.679 97.8 4.695 3.999 4.082

320 80 320
CleanSpecNet 3.149 3.623 97.4 4.583 3.731 3.922

CleanUNet 2 (ℓ1+full) 3.302 3.681 97.9 4.689 3.995 4.065
CleanUNet 2 (ℓ1+high) 3.219 3.607 97.7 4.642 3.926 3.988

3. Experiment
In this section, we evaluate CleanUNet 2 on the Deep Noise
Suppression (DNS) dataset [8]. We compare it with other state-
of-the-art (SOTA) spectrogram and waveform-based models with
several objective and subjective evaluation metrics. The main
results are summarized in Tables 1 and 2.

3.1. Setup

Data preparation. The DNS 2020 dataset [8] contains 441
hours of clean speech (2150 speakers reading books) and 70K
noise clips, all under 16kHz sampling rate. The training set
is composed of 500 hours clean-noisy speech pairs with 31
SNR levels ranging from −5 to 25dB [8]. For each waveform
pair (xnoisy, x), we first compute spectrogram pair (ynoisy =
s(xnoisy; θspec), y = s(x; θspec)). Then, we take aligned 10-
second random clips from waveform and spectrogram.
Hyperparameters. The hyperparameters for CleanUNet are the
following: it has 8 encoder/decoder layers, each with hidden
dimension H = 64, stride S = 2, and kernel size K = 4. It
has 5 self-attention blocks, each with 8 heads, model dimension
= 512, no dropout and no positional encoding. The hyper-
paremeters for CleanSpecNet are the following: it has 5 con-
volutional layers, each with hidden dimension H = 64, stride
S = 1, and kernel size K = 4. It has 5 self-attention blocks
same as CleanUNet.

Optimization. The optimizer is an Adam optimizer with
β1 = 0.9 and β2 = 0.999. The learning rate scheduler is
the linear warmup (ratio = 5%) with cosine annealing, where
the maximum learning rate is 2 × 10−4. The CleanSpec-
Net is trained to minimize Eq. (1), with a batchsize of 64
and 1M iterations. We use multi-resolution hop sizes in
{50, 120, 240}, window lengths in {240, 600, 1200}, and FFT
bins in {512, 1024, 2048}. All models are trained on 8 NVIDIA
V100 GPUs.

We study different spectrogram hyperparameters in Section
3.2. The CleanUNet 2 is trained to minimize the full or high-
band losses described in Section 2.4, with a batchsize of 32 and
500K iterations.

Evaluation. We use objective and subjective metrics to evaluate
quality of denoised speech. Objective metrics include: i) Per-
ceptual Evaluation of Speech Quality (PESQ, where WB means
wide-band and NB means narrow-band) [39], ii) Short-Time Ob-
jective Intelligibility (STOI) [40], and iii) Mean Opinion Score
(MOS) prediction of the a) distortion of speech signal (SIG), b)
intrusiveness of background noise (BAK), and c) overall qual-
ity (OVRL) [41]. We also use the subjective MOS evaluations
recommended in ITU-T P.835 [42]. We randomly select 100
samples from the test set. Each utterance is scored by 15 workers
in three dimensions: SIG, BAK, and OVRL.
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Table 4: Wilcoxon statistical test results (p-values) between
CleanUNet 2 (ℓ1+high) and baseline models. Results indicate
CleanUNet 2 consistently outperforms baseline models in sub-
jective and objective evaluation metrics.

Metric Baseline Model p-value

PESQ (WB)
CleanUNet (ℓ1+high) 1.9× 10−13

FullSubNet 2.2× 10−23

FAIR-denoiser 4.5× 10−26

STOI
CleanUNet (ℓ1+high) 3.6× 10−14

FullSubNet 2.3× 10−23

FAIR-denoiser 2.6× 10−24

MOS OVRL
CleanUNet (ℓ1+high) 4.7× 10−3

FullSubNet 5.9× 10−5

FAIR-denoiser 2.4× 10−6

3.2. Main Results

CleanUNet 2: We compare CleanUNet 2 with several SOTA
models. Similar to [27], we study both full and high-band STFT
losses described in Section 2.4. Table 1 demonstrates objective
and subjective evaluations on the no-reverb testset. CleanUNet
2 outperforms all baselines in objective evaluations. On average,
there is a significant boost (> 0.1) in PESQ. In terms of subjec-
tive evaluation, CleanUNet 2 also outperforms CleanUNet with
comparable configurations (e.g., loss combinations).

To test the statistical significance of improvement, we con-
duct the Wilcoxon signed-rank test between CleanUNet 2 and
baseline models with respect to PESQ, STOI, and MOS OVRL.
The p-values are shown in Table 4. Results indicate CleanUNet
2 performs consistently better than baseline models in these
objective and subjective metrics.
CleanSpecNet: We study the effect of spectrogram hyperparam-
eters in CleanSpecNet and the resulting CleanUNet 2. To obtain
denoised speech with the denoised spectrogram generated by
CleanSpecNet, we extract phase information from noisy speech,
and apply inverse STFT to the denoised spectrogram and the
phase.

Results on objective evaluations are shown in Table 2. First,
we note that CleanSpecNet with a window length of 320 is
a highly competitive denoiser by itself. Second, CleanUNet
2 always improves over CleanSpecNet. Third, we find for
CleanSpecNet, smaller window lengths and hop sizes lead to
better quality (see underlined scores), while it is the opposite
for CleanUNet 2. This means a better spectrogram model does
not always lead to a better hybrid model. Interestingly, the
best performance of CleanUNet 2 (PESQ: 3.262) is achieved
by combining the waveform model with a spectrogram-based
model (CleanSpecNet) using typical neural vocoder STFT pa-
rameters (i.e., Window Length 1024 and Hop Size 256). This
empirical evidence highlights our motivation of using two-stage
speech synthesis pipeline to improve the speech denosing results.
Conditioning Methods: We study different conditioning meth-
ods in Table 5. We use the set of hyperparameters whose window
length is 1024, and optimize with the high-band loss. These
methods lead to very similar results. Since the element-wise
addition is the simplest and leads to the smallest model footprint,
we use this conditioning method in CleanUNet 2.

3.3. Inference Speed and Latency

We compare inference speed among FAIR-denoiser, CleanUNet,
CleanSpecNet and the full CleanUNet 2. We use real time factor

Table 5: Study on different conditioning methods.

Conditioning PESQ (WB) STOI (%) pred. COVRL
Addition 3.146 97.6 3.904

Concatenation 3.146 97.6 3.909
FiLM [36] 3.136 97.6 3.893

Table 6: Inference speed (RTF) of the FAIR-denoiser and Clea-
nUNet 2. The algorithmic latency for all models is 16ms for
16kHz audio.

Model RTF
FAIR-denoiser 2.59× 10−3

CleanUNet 3.43× 10−3

CleanSpecNet 9.91× 10−4

CleanUNet 2 5.48× 10−3

(RTF) to measure inference speed. RTF is defined as the time to
generate some speech divided by its total time. We use batchsize
= 4, length = 10 seconds, and sampling rate = 16kHz. Results
are in Table 6.

Note that, CleanUNet 2 has 16 ms latency for 16kHz au-
dio, which comes from the temporal downsampling (i.e., 256×)
from the original time-domain waveform to the bottleneck hid-
den representation (between encoder and decoder) its waveform
submodule. In a streaming system, one may cache previous
hidden representation, and wait until the next 256 waveform
samples (correspond to 16 ms) to compute the most current
hidden state.

3.4. Non-causal Speech Denoising Models

We evaluate denoising quality of non-causal versions of our
models. These models are also useful, as they can be used for
offline denoising in applications where real-time denoising is
not necessary. The non-causal models are obtained by removing
the causal attention masks. Results are shown in Table 3.

4. Related Work
We notice that a few hybrid models are proposed for speech
denoising in previous study. [43] proposes a joint network com-
posed of a spectrogram-based network followed by a waveform
decoder. Different from our CleanUNet 2, their network only
takes the noisy spectrogram as input, which may lose information
from the noisy waveform. In addition, their network is not causal.
[44] proposes a neural cascade architecture with triple-domain
losses. [45] decouples the joint optimization of spectrogram
magnitude and phase into two sub-tasks; only magnitude is pre-
dicted in the first stage. After that, both the magnitude and
phase components are refined in the second stage. [46] suppress
the noise in the spectrogram magnitude at one path, and try to
compensate for the lost spectral detail in the complex domain at
another path.

5. Conclusion
We introduce CleanUNet 2, a hybrid speech denoising model.
It first applies a spectrogram-based model to denoise spectro-
gram, and then uses it to condition a waveform-based model
(CleanUNet), which outputs denoised waveform. For both sub-
modules we use self-attention to refine the representation. We
test CleanUNet 2 on DNS; it achieves the state-of-the-art speech
denoising quality in both objective and subjective evaluations.
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