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Abstract
Single-stage text-to-speech models have been actively studied
recently, and their results have outperformed two-stage pipeline
systems. Although the previous single-stage model has made
great progress, there is room for improvement in terms of its
intermittent unnaturalness, computational efficiency, and strong
dependence on phoneme conversion. In this work, we introduce
VITS2, a single-stage text-to-speech model that efficiently syn-
thesizes a more natural speech by improving several aspects of
the previous work. We propose improved structures and train-
ing mechanisms and present that the proposed methods are ef-
fective in improving naturalness, similarity of speech character-
istics in a multi-speaker model, and efficiency of training and
inference. Furthermore, we demonstrate that the strong depen-
dence on phoneme conversion in previous works can be signif-
icantly reduced with our method, which allows a fully end-to-
end single-stage approach.
Index Terms: Text to Speech, Speech Synthesis, VITS

1. Introduction
Recent developments in deep neural network-based text-to-
speech have seen significant advancements. Deep neural
network-based text-to-speech is a method for generating cor-
responding raw waveforms from input texts; it has several in-
teresting features that often make the text-to-speech task chal-
lenging. A quick review of the features reveals that the text-to-
speech task involves converting text, which is a discontinuous
feature, into continuous waveforms. The input and output have
a time step difference of hundreds of times, and the alignment
between them must be very precise to synthesize high-quality
speech audio. Additionally, prosody and speaker characteristics
not present in the input text should be expressed naturally and
it is a one-to-many problem in which text input can be spoken
in multiple ways. Another factor that makes synthesizing high-
quality speech challenging is that humans focus on individual
components when listening to an audio; therefore, even if a
fraction of the hundreds of thousands of signals that constitute
the entire audio are unnatural, humans can easily sense them.
Efficiency is another factor that makes the task difficult. The
synthesized audio has a substantial time resolution, which gen-
erally comprises more than 20,000 data per second, demanding
highly efficient sampling methods.

Owing to the text-to-speech task features, the solution can
also be sophisticated. Previous works have addressed these
problems by dividing the process of generating waveforms from
input texts into two cascaded stages. A popular method in-
volves producing intermediate speech representations such as
mel-spectrograms or linguistic features from the input texts in
the first stage [1, 2, 3, 4, 5, 6, 7] and then generating raw wave-

forms conditioned on those intermediate representations in the
second stage [8, 9, 10, 11, 12, 13, 14, 15]. Two-stage pipeline
systems have the advantages of simplifying each model and fa-
cilitating training; however, they also have the following lim-
itations. 1) Error propagation from the first stage to the sec-
ond stage. 2) Rather than utilizing the learned representation
inside the model, it is mediated through human-defined fea-
tures such as mel-spectrogram or linguistic features. 3) Com-
putation required to generate intermediate features. Recently,
to address these limitations, single-stage models that directly
generate waveforms from input texts have been actively studied
[16, 7, 17, 18]. The single-stage models not only outperformed
the two-stage pipeline systems, but also showed an ability to
generate high-quality speech nearly indistinguishable from hu-
mans.

Although the previous work [17] has achieved great success
with the single-stage approach, the model [17] has the follow-
ing problems: intermittent unnaturalness, low efficiency of the
duration predictor, complex input format to alleviate the limita-
tions of alignment and duration modeling (use of blank token),
insufficient speaker similarity in the multi-speaker model, slow
training, and strong dependence on the phoneme conversion.
In this work, we provide methods to address these problems.
We propose a stochastic duration predictor trained through ad-
versarial learning, normalizing flows improved by utilizing the
transformer block and a speaker-conditioned text encoder to
model multiple speakers’ characteristics better. We confirm that
the proposed methods improve quality and efficiency. Further-
more, we show that the methods reduce the dependency on the
phoneme conversion through the experiment using normalized
texts as the input of the model. Thus, the methods move closer
to a fully end-to-end single-stage approach.

2. Method

In this section, we describe improvements in four subsections:
duration prediction, augmented variational autoencoder with
normalizing flows, alignment search, and speaker-conditioned
text encoder. We propose a method that uses adversarial learn-
ing to train the duration predictor to synthesize natural speech
with high efficiency in both training and synthesis. Our model
essentially learns alignments using the Monotonic Alignment
Search (MAS) proposed in the previous work [4, 17], and we
further suggest a modification to improve the quality. In addi-
tion, we propose a method to improve naturalness by introduc-
ing the transformer block into the normalizing flows, which en-
ables capturing long-term dependencies when transforming the
distribution. Furthermore, we modify the speaker conditioning
to improve the speaker similarity in a multi-speaker model.
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Figure 1: Diagram depicting (a) Training of the duration predictor, (b) Normalizing flows with the transformer block, and (c) Speaker-
conditioned text encoder.

2.1. Stochastic Duration Predictor with Time Step-wise
Conditional Discriminator

The previous work [17] has shown that the flow-based stochas-
tic duration predictor is more effective in improving the natu-
ralness of synthesized speech than the deterministic approach.
It showed great results; however, the flow-based method re-
quires relatively more computations and some sophisticated
techniques. We propose a stochastic duration predictor with
adversarial learning to synthesize more natural speech with
higher efficiency in both training and synthesis than the previ-
ous work [17]. The overview of the proposed duration predictor
and discriminator is shown in Figure 1a. We apply adversarial
learning to train the duration predictor with a conditional dis-
criminator that is fed the same input as the generator to appro-
priately discriminate the predicted duration. We use the hidden
representation of the text htext and Gaussian noise zd as the
input of the generator G; and the htext and duration obtained
using MAS in the logarithmic scale denoted as d or predicted
from the duration predictor denoted as d̂, are used as the input
of the discriminator D. Discriminators of general generative ad-
versarial networks are fed inputs of a fixed length, whereas the
duration for each input token is predicted, and the length of the
input sequence varies for each training instance. To properly
discriminate the inputs of variable length, we propose a time
step-wise discriminator that discriminates each of the predicted
durations of all tokens. We use two types of losses; the least-
squares loss function [19] for adversarial learning and the mean
squared error loss function:

Ladv(D) = E(d,zd,htext)

[
(D(d, htext)− 1)2

+ (D(G(zd, htext), htext))
2
]
, (1)

Ladv(G) = E(zd,htext)

[
(D(G(zd, htext))− 1)2

]
, (2)

Lmse = MSE(G(zd, htext), d) (3)

Our proposed duration predictor and training mechanism allow
for a learning duration in short steps, and the duration predictor
is separately trained as the last training step, which reduces the
overall computation time for training.

2.2. Monotonic Alignment Search with Gaussian Noise

Following the previous work [4, 17], we introduce MAS into
our model to learn the alignment. The algorithm yields the
alignment between text and audio that has the highest proba-

bility among all possible monotonic alignments, and the model
is trained to maximize its probability. The method is efficient;
however, after searching and optimizing a particular alignment,
it is limited in exploration to search for other alignments that
are more appropriate. To mitigate this, we add a small Gaus-
sian noise to the calculated probabilities. This gives the model
extra opportunities to search for other alignments. We only add
this noise at the beginning of training because MAS enables the
model to learn the alignments quickly. Referring to a previ-
ous work [4], which described the algorithm in detail, Q values
have the maximum log-likelihood calculated for all possible po-
sitions in the forward operation. We add small Gaussian noise ϵ
to the calculated Q values in the operation.

Pi,j = logN (zj ;µi, σi) (4)

Qi,j = max
A

j∑

k=1

logN (zk;µA(k), σA(k))

= max(Qi−1,j−1, Qi,j−1) + Pi,j + ϵ (5)

where i and j denote a specific position on the input sequence
and posterior, respectively, z represents transformed latent vari-
ables from the normalizing flows. ϵ is obtained as the product of
noise sampled from the standard normal distribution, the stan-
dard deviation of P , and the noise scale starting at 0.01 and
decreasing by 2× 10−6 for every step.

2.3. Normalizing Flows using Transformer Block

The previous work [17] demonstrated the capability of the vari-
ational autoencoder augmented with normalizing flows to syn-
thesize high-quality speech audio. The normalizing flows com-
prise convolution blocks, which are effective structures for cap-
turing the patterns of adjacent data and enabling the model to
synthesize high-quality speech. The ability to capture long-
term dependencies can be crucial when transforming distribu-
tion because each part of the speech is related to other parts that
are not adjacent. Although a convolution block captures adja-
cent patterns effectively, it has a disadvantage in capturing long-
term dependencies owing to the limitations of its receptive field.
Therefore, we add a small transformer block with the residual
connection into the normalizing flows to enable the capturing
of long-term dependencies, as shown in Figure 1b. Figure 2
shows an actual attention score map and the receptive field of
the convolution block. We can confirm that the transformer
block collects information at various positions when transform-
ing the distribution, which is impossible with the receptive field.
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Figure 2: Actual attention score map learned with the trans-
former block in the normalizing flows. The inside area of the
orange lines corresponds to the receptive field of the first convo-
lution block in the normalizing flows of the previous work [17].
It demonstrates that the transformer block collects information
to transform the distribution at various positions that can not
be captured with the convolution block.

2.4. Speaker-Conditioned Text Encoder

Because the multi-speaker model is to synthesize speech in mul-
tiple characteristics according to the speaker condition with one
single model, expressing individual speech characteristics of
each speaker is an important quality factor as well as natural-
ness. The previous work showed that the single-stage model
can model multiple speakers with high quality. Considering
some features, such as a speaker’s particular pronunciation and
intonation, significantly influences the expression of the speech
characteristics of each speaker but are not contained in the input
text, we design a text encoder conditioned with the speaker in-
formation to better mimic various speech characteristics of each
speaker by learning the features while encoding the input text.
We condition the speaker vector on the third transformer block
of the text encoder, as shown in Figure 1c.

3. Experiments
We conducted experiments on two different datasets. We used
the LJ Speech dataset [20] to confirm the improvement in natu-
ralness and the VCTK dataset [21] to verify whether our model
could reproduce speaker characteristics better. The LJ Speech
dataset consists of 13,100 short audio clips of a single speaker
with a total length of approximately 24 hours. The audio format
is 16-bit PCM with a sample rate of 22.05 kHz, and we used it
without any manipulation. We randomly split the dataset into
a training set (12,500 samples), validation set (100 samples),
and test set (500 samples). The VCTK dataset consists of ap-
proximately 44,000 short audio clips uttered by 109 native En-
glish speakers with various accents. The total length of the au-
dio clips is approximately 44 hours. The audio format is 16-bit
PCM with a sample rate of 44.1 kHz. We reduced the sample
rate to 22.05 kHz. We randomly split the dataset into a training
set (43,470 samples), validation set (100 samples), and test set
(500 samples).

We used 80 bands mel-scale spectrograms for calculating
the reconstruction loss. In contrast with the previous work [17],
we used the same spectrograms as the input of the posterior
encoder. The fast Fourier transform, window, and hop sizes
were set to 1024, 1024, and 256, respectively.

We conducted experiments using both phoneme sequences
and normalized texts as the input of the model. We converted
text sequences into International Phonetic Alphabet sequences
using open-source software [22] and fed the text encoder with

the sequences. Contrasting with the previous work [17], we
did not use the blank token. For the experiment with normal-
ized texts, we normalized the input text with simple rules using
open-source software [23] and fed the text encoder with it.

The networks were trained using the AdamW [24] opti-
mizer with β1 = 0.8, β2 = 0.99, and weight decay λ = 0.01.
The learning rate decay was scheduled by a 0.9991/8 factor in
every epoch, with an initial learning rate of 2 × 10−4. We fed
the networks with 256 training instances per step. Following the
previous work [17], the windowed generator training was ap-
plied. We used mixed precision training on four NVIDIA V100
GPUs. The networks to generate waveforms and the duration
predictor were trained up to 800k and 30k steps, respectively.

4. Results
4.1. Evaluation of Naturalness

To confirm that the proposed model synthesizes natural speech,
crowdsourced mean opinion score (MOS) tests were conducted.
Raters rated their naturalness on a 5-point scale from 1 to 5 after
listening to randomly selected audio samples from the test sets.
Considering that the previous work [17] has already demon-
strated similar quality to human recordings, we also conducted a
comparative mean opinion score (CMOS) test, which is appro-
priate for evaluating high-quality samples by direct comparison.
Raters rated their relative preference in terms of naturalness on
a 7-point scale from 3 to -3 after listening to randomly selected
audio samples from the test sets.1 Raters were allowed to evalu-
ate each audio sample once. All audio samples were normalized
to avoid the effect of amplitude differences on the score. We
used the official implementation and pretrained weights of the
previous work [17] as the comparison model. The evaluation
results are presented in Table 1 and Table 2a. The MOS differ-
ence between our method and the previous work [17] was 0.09,
and the CMOS and confidence interval were 0.201 and ±0.105,
respectively. The results demonstrate that the our method sig-
nificantly improves the quality of synthesized speech.

4.2. Ablation Studies

Ablation studies were also conducted to verify the validity of
the proposed methods. To verify the validity of the stochastic
duration predictor trained with adversarial learning, it was sub-
stituted with the deterministic duration predictor that had the
same structure and was trained with L2 loss. The deterministic
duration predictor was trained up to the same steps as the pre-
vious work [17]. To verify the efficacy of the noise scheduling
used in the alignment search, the model was trained without the
noise. We trained the model without the transformer block in
the normalizing flows to verify its effectiveness. The evaluation
results are presented in Table 1. The MOS differences of the
ablation studies on the deterministic duration predictor, align-
ment search without the noise, and normalizing flows without
the transformer block are 0.14, 0.15, and 0.06, respectively. As
we do not use the blank token and linear spectrogram, the com-
putational efficiency would be improved, and removing some
of the proposed methods shows lower performance compared
with the previous work [17]. The results show that the proposed
methods are effective in improving the quality.

1Demo: https://vits-2.github.io/demo/

4376



Table 1: Comparison of MOS of the proposed model, the pre-
vious work, and the ablation studies on the LJ Speech dataset
with 95% confidence intervals.

Model MOS (CI)

Ground Truth 4.43 (±0.06)

VITS 4.38 (±0.06)

VITS2 4.47 (±0.06)
w/o Adversarial Learning for Duration Predictor 4.33 (±0.07)
w/o Alignment Noise 4.32 (±0.07)
w/o Transformer Block 4.41 (±0.07)

Table 2: (a) Comparative MOS of the proposed model and the
previous work on the LJ Speech dataset with 95% confidence
intervals. (b) Comparison of similarity MOS of the proposed
model and the previous work on the VCTK dataset with 95%
confidence intervals .

(a) Comparative MOS

CMOS CI

0.201 ±0.105

(b) Similarity MOS

Model MOS (CI)

VITS 3.79 (±0.09)
VITS2 3.99 (±0.08)

4.3. Evaluation of Speaker Similarity

To confirm the improvement in speaker similarity in the multi-
speaker model, similarity MOS tests similar to the previous
work [25] were conducted through crowdsourcing. In the test,
randomly sampled human recorded audio from the test set was
presented as a reference, and raters scored the similarity be-
tween the reference and the corresponding synthesized audio
on a five-point scale from 1 to 5. As in section 4.1, raters were
allowed to evaluate each audio sample once, and the audio sam-
ples were normalized. The evaluation results are presented in
Table 2b. VITS2 was rated 0.2 MOS higher than the previous
work [17], which shows the effectiveness of our method in im-
proving speaker similarity when modeling multiple speakers.

4.4. Reduced dependency on the phoneme conversion

Previous works [17, 26] have shown good performance with
single-stage approaches but continue to have a strong depen-
dence on phoneme conversion. Because normalized text does
not inform its actual pronunciation, it makes learning accu-
rate pronunciations challenging. It is currently a crucial barrier
to achieving a fully end-to-end single-stage speech synthesis.
We present that our method significantly improves this problem
through intelligibility tests. After transcribing 500 synthesized
audio in the test set using Google’s automatic speech recog-
nition API, we calculated the character error rate (CER) with
the ground truth text as the reference. We compared the re-
sults of the following four models with the ground truth: the
proposed model using phoneme sequences, the proposed model
using normalized texts, the previous work using phoneme se-
quences, and the previous work using normalized texts. Table 3
presents the comparison, which confirms that not only the pro-
posed model outperforms the previous work, but also the per-
formance of our model using normalized texts is comparable to
that of the model using phoneme sequences. It demonstrates the
possibility of a data-driven, fully end-to-end approach.

Table 3: Comparison of the intelligibility tests on the LJ Speech
dataset.

Model CER

Ground Truth 4.91

VITS with Phoneme Sequences 4.26
VITS with Normalized Texts 5.07

VITS2 with Phoneme Sequences 3.92
VITS2 with Normalized Texts 4.01

Table 4: Comparison of the synthesis and training speed. The
columns ’n kHz’ and ’Real-time’ of ’Synthesis’ column denote
the model’s ability to generate n × 1000 raw audio samples
per second and the synthesis speed over real-time, respectively.
The ’sec/step’ value of ’Training’ column denotes the average
elapsed time for the computation of training per step.

Model Synthesis
kHz Real-time

Training
sec/step

VITS 1,779 ×80.68 1.227
VITS2 2,144 ×97.25 0.951

4.5. Comparison of Synthesis and Training Speed

We compared our model’s synthesis and training speed with
those of the previous work [17]. We measured the synchro-
nized elapsed time over the entire process to generate raw wave-
forms from input sequences with 500 sentences randomly se-
lected from the LJ Speech dataset. We used a single NVIDIA
V100 GPU with a batch size of 1. We also measured and aver-
aged the elapsed time for the training computation of each step
for five epochs on four NVIDIA V100 GPUs. Table 4 shows
the results. As the duration predictor is more efficient and can
be trained separately and the input sequences are shorter than
in the previous work, its training and synthesis speed are im-
proved; the improvements are 20.5% and 22.7%, respectively.

5. Conclusion
We propose VITS2, a single-stage text-to-speech model that can
efficiently synthesize more natural speech. We improved the
training and inference efficiency and naturalness by introduc-
ing adversarial learning into the duration predictor. The trans-
former block was added to the normalizing flows to capture
the long-term dependency when transforming the distribution.
The synthesis quality was improved by incorporating Gaussian
noise into the alignment search. The dependency on phoneme
conversion, which was posing a challenge in achieving a fully
end-to-end single-stage speech synthesis, was significantly re-
duced. The test results also show that overall intelligibility was
improved. We demonstrated the validity of our proposed meth-
ods through experiments, quality evaluation, and computation
speed measurement. Various problems still exist in the field of
speech synthesis that must be addressed, and we hope that our
work can be a basis for future research.
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