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Abstract

This paper introduces a new speech dataset called “LibriTTS-
R” designed for text-to-speech (TTS) use. It is derived by ap-
plying speech restoration to the LibriTTS corpus, which con-
sists of 585 hours of speech data at 24 kHz sampling rate from
2,456 speakers and the corresponding texts. The constituent
samples of LibriTTS-R are identical to those of LibriTTS, with
only the sound quality improved. Experimental results show
that the LibriTTS-R ground-truth samples showed significantly
improved sound quality compared to those in LibriTTS. In addi-
tion, neural end-to-end TTS trained with LibriTTS-R achieved
speech naturalness on par with that of the ground-truth sam-
ples. The corpus is freely available for download from http:
//www.openslr.org/141/.
Index Terms: Text-to-speech, dataset, speech restoration

1. Introduction
Text-to-speech (TTS) technologies have been rapidly advanced
along with the development of deep learning [1–6]. With
studio-quality recorded speech data, one can train acoustic mod-
els [2, 3] and high-fidelity neural vocoders [7, 8]. These have
enabled us to synthesize speech in a reading style almost as nat-
ural as human speech. In addition, many implementations of the
latest TTS models have been published [9,10], and the gateway
to TTS research is certainly widening.

One of the remaining barriers to develop high-quality TTS
systems is the lack of large and high-quality public dataset.
Training of high-quality TTS models requires a large amount
of studio-quality data. In several TTS papers, over 100 hours of
studio-recorded data have been used [3, 8, 11]. Unfortunately,
such studio-recorded datasets are not publicly available, and
thus reproducing their results is difficult for others.

At the same time, speech restoration (SR) has advanced us-
ing speech generative models [12–18]. These state-of-the-art
models can convert reverberated lecture and historical speech
to studio-recorded quality [16–18]. Inspired by these results,
we came up with an idea that the above-mentioned barrier can
be removed by applying SR to public datasets.

With this paper, we publish LibriTTS-R, a quality-improved
version of LibriTTS [19]. LibriTTS is a non-restrictive license
multi-speaker TTS corpus consisting of 585 hours of speech
data from 2,456 speakers and the corresponding texts. We
cleaned LibriTTS by applying a text-informed SR model, Mi-
ipher, [20] that uses w2v-BERT [21] feature cleaner and Wave-
Fit neural vocoder [8]. By subjective experiments, we show that
the speech naturalness of a TTS model trained with LibriTTS-
R is greatly improved from that trained with LibriTTS, and is
comparable with that of the ground-truth.

LibriTTS-R is publicly available at http://www.
openslr.org/141/, with the same non-restrictive license.
Audio samples of the ground-truth and TTS generated samples
are available at our demo page1.

2. The LibriTTS corpus
The LibriTTS corpus is one of the largest multi-speaker speech
datasets designed for TTS use. This dataset consists of 585
hours of speech data at 24 kHz sampling rate from 2,456 speak-
ers and the corresponding texts. The audio and text materi-
als are derived from the LibriSpeech corpus [22], which has
been used for training and evaluating automatic speech recogni-
tion systems. Since the original LibriSpeech corpus has several
undesired properties for TTS including sampling rate and text
normalization issues, the samples in LibriTTS were re-derived
from the original materials (MP3 from LibriVox and texts from
Project Gutenberg) of LibriSpeech.

One issue is that the LibriTTS sound quality is not on
par with smaller scale but higher quality TTS datasets such
as LJspeech [23]. The quality of the TTS output is highly
affected by that of the speech samples used in model train-
ing. Therefore, the quality of the generated samples of a TTS
model trained on LibriTTS doesn’t match those of the ground-
truth samples [24, 25]. For example, Glow-TTS achieved 3.45
mean-opinion-score (MOS) on LibriTTS where the speech ob-
tained from the ground-truth mel-spectrograms by a vocoder
was 4.22 [24]. Note that MOSs on the LJspeech for generated
and ground-truth were 4.01 and 4.19, respectively [24]. The re-
sults suggest that the quality of speech samples in LibriTTS are
inadequate for training of high-quality TTS models.

3. Data processing pipeline
Although noisy TTS datasets are useful for advanced TTS
model training [26–28], access to large scale high-quality
datasets is as equally important for advancing TTS techniques.
To provide a public large-scale and high-quality TTS dataset,
we apply a SR model to LibriTTS.

3.1. Speech restoration model overview

One critical requirement of SR models for the purpose of clean-
ing datasets is robustness. If the SR model generates a large
number of samples with artifacts, it will adversely impact the
subsequent TTS model training. Therefore, for our purposes,
we need to reduce as much as possible the number of samples
that fail to be recovered.

1https://google.github.io/df-conformer/
librittsr/
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Figure 1: Data processing pipeline overview. Speech samples
in the LibriTTS corpus are restored using Miipher [20].

To satisfy this requirement, we use a text-informed para-
metric re-synthesis-based SR model, Miipher [20], as shown in
Fig. 1. In this model, first, w2v-BERT features are extracted
by w2v-BERT [21] from the noisy waveform. Then, a DF-
Conformer [29]-based feature-cleaner predicts the w2v-BERT
features of the clean waveform. Finally, the restored waveform
is synthesized using a WaveFit-5 neural vocoder [8].

The reason for selecting Miipher is that it adresses two par-
ticularly difficult to restore degradation patterns observed in
LibriTTS samples. The first degradation is phoneme masking.
Speech signals are sometimes masked by noise and/or rever-
beration, resulting in speech that is is difficult to discriminate
from noise without additional information. The second degra-
dation is phoneme deletion. Important frequency parts of some
phonemes could be missing from the signal due to non-linear
audio processing and/or down-sampling. To address these prob-
lems, Miipher introduced two techniques. (i) for the input fea-
ture, it uses w2v-BERT [21] features instead of log-mel spectro-
gram used in a conventional SR model [17], and (ii) to use lin-
guistic features conditioning extracted by PnG-BERT [3] from
the transcript corresponding to the noisy speech. Since w2v-
BERT is trained on large amounts of degraded speech samples
and it improves ASR performance, we expect its effectiveness
on making SR models robust against speech degradation. In
addition, the use of text information improving speech inpaint-
ing performance [30], we consider that it also improves speech
restoration performance. For the detail, please see the original
paper [20].

3.2. Speech restoration model training

We trained a Miipher model with a proprietary dataset that
contains 2,680 hours of noisy and studio-quality speech pairs.
The target speech dataset contains 670 hours of studio-recorded
Australian, British, Indian, Nigerian, and North American En-
glish at 24 kHz sampling. For the noise dataset, we used
the TAU Urban Audio-Visual Scenes 2021 dataset [31], inter-
nally collected noise snippets that simulate conditions like cafe,
kitchen, and cars, and noise sources. The noisy utterances were
generated by mixing randomly selected speech and noise sam-
ples from these datasets with signal-to-noise ratio (SNR) from
5 dB to 30 dB. In addition, we augmented the noisy dataset with
4 patterns depending on the presence or absence of reverbera-
tion and codec artifacts. A room impulse response (RIR) for
each sample was generated by a stochastic RIR generator using
the image method [32]. For simulating codec artifacts, we ran-
domly applied one of MP3, Vorbis, A-law, Adaptive Multi-Rate
Wideband (AMR-WB), and OPUS with a random bit-rate. The

Table 1: MOS and SxS test results on the ground-truth samples
with their 95% confidence intervals. A positive SxS score indi-
cates that LibriTTS-R was preferred.

Split MOS (↑) SxSLibriTTS LibriTTS-R

test-clean 4.36± 0.08 4.41± 0.07 0.80± 0.15
test-other 3.94± 0.10 4.09± 0.10 1.42± 0.14

detailed simulation parameters were listed in [20].
We first pre-trained the feature-cleaner and WaveFit neu-

ral vocoder 150k and 1M steps, respectively, where WaveFit
was trained to reconstruct waveform from clean w2v-BERT
features. Then, we fine-tuned the WaveFit neural vocoder
350k steps using cleaned w2v-BERT features by the pre-trained
feature-cleaner.

3.3. Speech restoration pipeline

First, we calculated PnG-BERT [3] features from a transcript
and a speaker embedding using the speaker encoder described
in [20] from the original 24 kHz sampling waveform. Here, for
speech samples with waveform lengths shorter than 2 seconds,
the speaker embedding was calculated after repeating them to
get a pseudo longer waveform. Since the w2v-BERT [21] model
was trained on 16 kHz waveforms, we applied down-sampling
to the LibriTTS sample for calculating w2v-BERT features. Fi-
nally, we synthesized restored 24 kHz sampling waveform using
WaveFit [8].

4. Experiments
4.1. Subjective experiments for ground-truth samples

4.1.1. Experimental setups

We first compared the quality of ground-truth speech samples
in LibriTTS-R with those in LibriTTS. We evaluated the sound
quality using “test-clean” and “test-other” subsets. We ran-
domly selected 620 samples from each subset. Since the “train-
*” and “dev-*” subsets are also divided into “clean” and “other”
according to the same word-error-rate (WER)-based criteria, the
sound quality of the entire dataset can be predicted by evaluat-
ing the sound quality of these two subsets.

To evaluate subjective quality, we rated speech quality
through mean-opinion-score (MOS) and side-by-side (SxS)
preference tests. We asked to rate the naturalness in MOS test,
and “which sound quality is better?” in SxS test. The scale
of MOS was a 5-point scale (1: Bad, 2: Poor, 3: Fair, 4: Good,
5: Excellent) with rating increments of 0.5, and that of SxS was
a 7-point scale (-3 to 3). Test stimuli were randomly chosen and
each stimulus was evaluated by one subject. Each subject was
allowed to evaluate up to six stimuli, that is, over 100 subjects
participated in this experiment to evaluate 640 samples in each
condition. The subjects were paid native English speakers in
the United States. They were requested to use headphones in a
quiet room. Audio samples are available in our demo page 1.

4.1.2. Results

Table 1 shows the MOS and SxS test results. In terms of speech
naturalness, LibriTTS achieved high MOSs: 4.36 and 3.94 on
test-clean and test-other, respectively. Although LibriTTS-R
achieved better MOSs than LibriTTS in both splits, the differ-
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Figure 2: Log-mel spectrograms of ground-truth waveforms from (top) LibriTTS and (bottom) LibriTTS-R. The left two and right two
examples are from “test-clean” and “test-other” splits, respectively.

ence was not significant. The reason of small difference in nat-
uralness might be because ground-truth samples are real speech
spoken by humans. In contrast, in terms of sound quality rated
by SxS tests, significant differences were observed on both split.

To confirm whether the text-content and speaker in the re-
stored speech samples are maintained, we evaluated the WER
and speaker similarity. To compute WER, we used “Pre-trained
Conformer XXL” model proposed in [33]. WER of “test-clean”
and “test-other” splits of LibriTTS were 3.4 and 5.1, whereas
those of LibriTTS-R were 3.2 and 5.1, respectively2. There-
fore, the text contents are considered to be not changed. To
evaluate speaker similarity, we used the cosine similarity of
speaker embedding [34, 35]. We calculated the similarity be-
tween the different utterances spoken by the same speaker in
the same dataset. This is because the samples in LibriTTS are
distorted, even if the similarity between corresponding samples
in LibriTTS and LibriTTS-R is small, this does not necessarily
indicate speaker similarity. The cosine similarity of LibriTTS
“test-clean” and “test-other” splits were 0.784 and 0.755, and
those of LibriTTS-R were 0.762 and 0.745. Since the similar-
ity calculated from the samples in LibriTTS spoken by different
speakers was 0.302, the speech characteristics of each speaker
is considered to be consistent.

Figure 2 shows the 128-dim log-mel spectrogram of speech
samples from LibriTTS and LibriTTS-R. We can see that the
LibriTTS samples are degraded by a variety of factors even
if these are from the test-clean split: from left to right, it can
be considered that speech samples were degraded by down-
sampling, environmental noise, reverberation, and non-linear
speech enhancement, respectively. As we can see spectrograms
of LibriTTS-R samples, the SR model restored these speech
samples into high-quality ones. This could be the reason of the
significant differences in the SxS tests.

Note that we have found a few examples that LibriTTS
speech sample achieved a better score in SxS comparison. By
listening these examples, two of 640 LibriTTS-R speech sam-
ples were distorted due to the failure of SR. Since it is difficult

2WER were a bit higher than those reported in the original pa-
per [33], because the ASR model was trained on noisy speech and tran-
scripts normalized by a different text-normalizer.

to manually check all samples, we have not checked all speech
samples in LibriTTS-R. Therefore, the samples in training splits
may also contain a small number of distorted samples.

4.2. Subjective experiments for TTS generated samples

4.2.1. Experimental setups

We trained multi-speaker TTS models with the same architec-
ture and the same hyper-parameters using either the LibriTTS
or LibriTTS-R corpus. The TTS model was build by concate-
nating the following acoustic model and neural vocoder without
joint fine-tuning.

Acoustic model: We used a duration unsupervised Non-
Attentive Tacotron (NAT) with a fine-grained variational auto-
encoder (FVAE) [11]. We used the same hyper-parameters and
training parameters listed in the original paper [11]. We trained
this model for 150k steps with a batch size of 1,024.

Neural vocoder: We used a WaveRNN [36] which con-
sisted of a single long short-term memory layer with 512 hidden
units, 5 convolutional layers with 512 channels as the condi-
tioning stack to process the mel-spectrogram features, and a 10-
component mixture of logistic distributions as its output layer.
The learning rate was linearly increased to 10−4 in the first 100
steps then exponentially decayed to 10−6 from 200k to 300k
steps. We trained this model using the Adam optimizer [37] for
500k steps with a batch size of 512.

The TTS model was trained on two types of training
datasets: Train-460 and Train-960. Train-460 consists of the
“train-clean-100” and “train-clean-360” subsets, and Train-960
indicates using “train-other-500” in addition to Train-460.

For the test sentences, we randomly selected 620 evaluation
sentences from the test-clean split. We synthesized waveforms
with 6 speakers (three female and three male) those are used in
the LibriTTS baseline experiments [19]. The female and male
reader IDs were (19, 103, 1841) and (204, 1121, 5717), respec-
tively. To evaluate subjective quality, we rated speech natural-
ness through MOS and side-by-side (SxS) preference tests. The
listening test setting was the same as Sec. 4.1 Audio samples of
generated speech are available in our demo page 1.
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Figure 3: Log-mel spectrograms of TTS generated waveforms where the multi-speaker TTS model was trained on (top) LibriTTS and
(bottom) LibriTTS-R, respectively. The input text was “The Free State Hotel served as barracks”.

Table 2: MOSs for the baseline multi-speaker TTS model outputs with their 95% confidence intervals.

Training dataset Speaker ID
19 103 1841 204 1121 5717

LibriTTS Train-460 2.49± 0.10 2.94± 0.10 3.40± 0.09 2.88± 0.10 2.72± 0.10 2.86± 0.09
LibriTTS Train-960 2.59± 0.10 2.75± 0.10 3.35± 0.10 2.74± 0.09 2.83± 0.10 2.97± 0.10

LibriTTS-R Train-460 4.11± 0.08 4.09± 0.08 3.88± 0.09 3.67± 0.09 3.92± 0.09 3.67± 0.08
LibriTTS-R Train-960 4.06± 0.08 4.31± 0.08 4.20± 0.08 4.11± 0.08 4.23± 0.07 4.08± 0.08

Table 3: SxS test results on the baseline multi-speaker TTS
model outputs with their 95% confidence intervals. A positive
score indicates that training on LibriTTS-R was preferred.

Speaker ID Training dataset
Train-460 Train-960

19 2.38± 0.11 2.51± 0.10
204 1.84± 0.14 2.20± 0.12

4.2.2. Results

Table 2 shows the MOS results. In all speaker IDs except for
ID 19, the TTS model using LibriTTS-R Train-960 as the train-
ing dataset achieved the highest MOSs. For Speaker ID 19, the
model using LibriTTS-R Train-460 achieved the highest MOS,
which was not significantly different from that using LibriTTS-
R Train-960. In other speaker IDs, MOSs of LibriTTS-R Train-
960 were significantly better than that of LibriTTS-R Train-460.
This trend was not observed in LibriTTS, rather in some cases,
MOS was decreased by using LibriTTS Train-960. The rea-
son for this degradation might be because that the “train-other-
500” split contains a lot of degraded speech samples. This result
suggests that the use of LibriTTS “train-other-500” split rather
degrades the output quality of the TTS. In contrast, speech sam-
ples in LibriTTS-R “train-other-500” split are restored to high-
quality speech samples, and resulting in that enables us to use
a large amount of high-quality training data and improved the
naturalness of the TTS outputs. In addition, the TTS model

trained on LibriTTS-R Train-960 achieved MOSs on a par with
human spoken speech samples in LibriTTS, effects of a few dis-
torted speech samples in the training can be considered as not
significant.

Table 3 shows the SxS results. We observed that the use
of LibriTTS-R also improve not only naturalness but also the
sound quality of TTS outputs. Figure 3 shows 128-dim log-mel
spectrograms of TTS outputs. We can see the harmonic struc-
ture is broken in the ID 5717 output of the TTS model trained
on LibriTTS (top right). The presence of such a sample could
be the reason for the lower naturalness scores on the MOS test.
Also, from ID 103 and 1121 examples, we can observe back-
ground noise in the output of TTS model trained on LibriTTS.
Such background noise does not exist in the outputs of TTS
model trained on LibriTTS-R. From these results, we conclude
that the LibriTTS-R corpus is a better TTS corpus that the Lib-
riTTS corpus, and enables us to train a high-quality TTS model.

5. Conclusions
This paper introduced LibriTTS-R, a sound quality improved
version of LibriTTS [19]. We cleaned speech samples in the
LibriTTS corpus by applying an SR model [20]. By subjec-
tive experiments, we show that the speech naturalness of a TTS
model trained with LibriTTS-R is improved from that trained
with LibriTTS, and is comparable with that of the ground-truth.
This corpus is released online, and it is freely available for
download from http://www.openslr.org/141/. We
hope that the release of this corpus accelerates TTS research.
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