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Abstract
State-of-the-art non-autoregressive text-to-speech (TTS) mod-
els based on FastSpeech 2 can efficiently synthesise high-
fidelity and natural speech. For expressive speech datasets how-
ever, we observe characteristic audio distortions. We demon-
strate that such artefacts are introduced to the vocoder recon-
struction by over-smooth mel-spectrogram predictions, which
are induced by the choice of mean-squared-error (MSE) loss
for training the mel-spectrogram decoder. With MSE loss Fast-
Speech 2 is limited to learn conditional averages of the training
distribution, which might not lie close to a natural sample if
the distribution still appears multimodal after all conditioning
signals. To alleviate this problem, we introduce TVC-GMM,
a mixture model of Trivariate-Chain Gaussian distributions, to
model the residual multimodality. TVC-GMM reduces spectro-
gram smoothness and improves perceptual audio quality in par-
ticular for expressive datasets as shown by both objective and
subjective evaluation.
Index Terms: expressive TTS, residual multimodality, over-
smoothness, mixed density networks, gaussian mixture

1. Introduction
The distribution of natural speech signals is multimodal since
the same content can be spoken in many different ways and
dependent since it is continuous in time and coherent within a
speaking voice [1]. Tractably modelling this complex distribu-
tion is a fundamental challenge in statistical parametric speech
synthesis (SPSS) [2]. A common problem are audio artefacts
due to over-smooth predictions caused by naive modelling as-
sumptions [3]. Ultimately, SPSS balances approximations of
the natural speech distribution with capabilities of available
modelling methods and computing resources. This has led to
various families of TTS models that achieve high-quality speech
synthesis through autoregressive factorization [4, 5], end to end
(E2E) training [6], generative adversarial loss [7, 8], variational
autoencoding [9] or normalizing flows [10].

In the family of non-autoregressive architectures, Fast-
Speech 2 [11, 12] is widely popular for its high-quality and fast
parallel generation, small data requirements and inherent con-
trollability. Its two stage pipeline separates the acoustic model
from the vocoder and reduces training time by re-using pre-
trained vocoders. Further, as discussed by [13], its explicit mod-
elling of pitch, energy and phoneme duration simplifies the dis-
tribution to be learned and reduces the over-smoothness and al-
lows for manual control during generation. However, character-
istic audio artefacts can still be observed with models from this
family - in particular with more expressive and multi-speaker
datasets. Although this problem has been treated by fine-tuning
the vocoder or training it jointly with the acoustic model in an
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Figure 1: Examples of residual multimodality observed in
marginal distributions over time and frequency for phoneme ph
after all pitch p and energy e conditioning in FastSpeech 2.

E2E architecture [7, 14, 8], we believe this only masks the un-
derlying issue by tuning to a particular dataset using high train-
ing efforts. We find that the conditioning is not sufficient for
expressive datasets and there is residual multimodality that in
conjunction with the inherent assumption of unimodality of the
MSE loss function is the root cause for the audio degradation.
Adding more conditioning or fine-tuning for individual datasets
is not sustainable for the application in controllable expressive
speech synthesis with intended large diversity of prosody.

In this paper we propose a mixture model to model this
residual multimodality as a compromise between the more pow-
erful distribution mapping approaches (data- and computation-
intensive and difficult to optimise approaches of GAN and nor-
malizing flows) and the controllability, fast/data-efficient train-
ing and generation speed of the FastSpeech 2 architecture.

We make the following contributions: (1) we demon-
strate how smoothness causes artefacts across vocoder architec-
tures for FastSpeech 2, (2) we propose TVC-GMM1, a novel
trivariate-chain gaussian mixture modelling layer which can
tractably model the residual multimodality in the spectrogram
distribution of non-autoregressive two-stage TTS models, (3)
we show that TVC-GMM reduces spectrogram smoothness and
improves perceptual audio quality in objective and subjective
evaluation in particular for expressive datasets, while maintain-
ing fast and data-efficient training and generation speed.

1code at https://github.com/sony/ai-research-code/tvc-gmm
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2. Residual Multimodality
We introduce the term residual multimodality for the gap in
complexity between the actual distribution to be learned and the
assumed distribution in the loss function. Although deep neu-
ral models are universal approximators, the distribution that can
practically be learned depends on the loss to be optimised [15].
FastSpeech 2 deploys MSE loss, which optimises training data
likelihood only under an assumed gaussian distribution [16] and
thus relies on conditioning on external control signals to sim-
plify the complex speech distribution. In Figure 1, we visualise
the remaining distribution of our training data after all condi-
tioning in FastSpeech 2 - that is speaker label, pitch bin and
energy bin. We show the estimated density of the spectrogram
value distribution marginalized over time (left) or frequency
(right) for selected phonemes ph and pitch/energy bins p and
e in the train split of the single-speaker LJSpeech dataset. Even
within single frequency bands, we observe multiple modes. Ad-
ditionally, we observe large variances in unimodal areas, which
might indicate dependencies between bins. The residual mul-
timodality and dependencies that appear despite conditioning
can cause over-smoothing artefacts as we show in Section 4.2.
Adding even more conditioning is unsustainable and distribu-
tion mapping approaches like normalizing flows add computa-
tion and data requirements, therefore we commence with mod-
elling the residual multimodality.

3. Trivariate-Chain Gaussian Mixture
Modelling (TVC-GMM)
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Figure 2: Illustration of approaches. TVC-GMM (top) models
dependencies of adjacent spectrogram bins by a trivariate gaus-
sian chain while FastSpeech 2 (bottom) only models means.

Let Y ∈ RT×F be a random variable representing the mel-
spectrograms, where T and F are the length and number of
frequency bins. Given some conditioning linguistic features L
and control inputs C, the goal for the acoustic model is to es-
timate the true distribution of mel-spectrograms by maximis-
ing the likelihood of the training data under the parametrized
distribution pθ(Y|L,C). FastSpeech 2 achieves this by min-
imising the mean squared error (MSE) between the predicted
and ground-truth spectrograms, which implicitly assumes the
values of individual time/frequency bins yt,f to be the means
of unimodal independent gaussian distributions [16]. As dis-
cussed in section 2, this assumption does not hold and learn-
ing the mean of the residual multimodal distribution leads to
the over-smoothness problem in TTS. To alleviate this problem,
we propose TVC-GMM, a mixture model of Trivariate-Chain
Gaussian distributions.

3.1. Trivariate-Chain Gaussian distribution

We start by addressing the dependence between adjacent bins.
Ideally, we would like to model the full T × F dimensional
spectrogram distribution, but this requires a prohibitively large
covariance matrix and fixed T and F . Instead, we break it down
and introduce a Trivariate-Chain Gaussian distribution.

Let Ỹ ∈ RT×F×3 be a random variable where each ele-
ment Ỹt,f is a triplet of neighbouring spectrogram bins Yt,f ,
Yt+1,f , and Yt,f+1 modelled by a trivariate Gaussian distri-
bution, i.e.

Ỹt,f ∼ N (µt,f ,Σt,f ) , (1)

where µt,f ∈ R3 and Σt,f ∈ R3×3 denote the mean and co-
variance matrix. The Ỹt,f are chained together by their over-
lapping targets and provide a way to represent local variances
dependent on correlations between time and frequency steps.
Our objective is to learn the parameters µt,f and Σt,f and to
sample from Ỹ instead of directly predicting individual spec-
trogram values as FastSpeech 2 does.

3.2. Trivariate-Chain Gaussian mixture model

To further address residual multimodality, we increase the flexi-
bility of Ỹ by replacing Ỹt,f with a mixture model as similarly
proposed for low-dimensional acoustic features in [1]:

Ỹt,f ∼
K∑

k=1

αt,f
k N (µt,f

k ,Σt,f
k ) , (2)

where K denotes the number of components and αt,f
k denotes

the mixing coefficients. In practice, we adapt the last network
layer to predict the parameters αt,f

k , µt,f
k and Σt,f

k and min-
imise negative log-likelihood (NLL) loss using the ground-truth
spectrogram and two time/frequency shifted copies as targets
(see Figure 2 for an illustration). This is what we call Trivariate-
Chain Gaussian Mixture Modelling (TVC-GMM).

3.3. Sampling from TVC-GMM

We propose naive sampling and conditional sampling as two
ways to sample a mel-spectrogram from TVC-GMM. Naive
sampling draws ⟨yt,f , yt+1,f , yt,f+1⟩ from Ỹt,f for each
time/frequency bin in parallel. As a result, we have multiple
values at the overlap of the trivariate-chains, which we simply
average to smooth sampling noise. However, over-sharpness
from noise can introduce new artefacts – although vocoders tol-
erate it better than over-smoothness (see Section 4.2). Thus,
to further increase consistency and reduce sampling noise, con-
ditional sampling uses an iterative algorithm which conditions
each Ỹt,f on the values drawn in previous bins. Instead of
sampling ⟨yt,f , yt+1,f , yt,f+1⟩ from Ỹt,f , we fix the known
value of yt,f (predicted as yt+1,f in the previous bin) and
obtain a bivariate slice of Ỹt,f from which we only sample
⟨yt+1,f , yt,f+1⟩ consistent with the previous timestep. The
overlapping values in frequency direction are still averaged and
we leave investigation into more sophisticated sampling ap-
proaches to future work.

4. Experiments
We conduct experiments on several datasets, vocoders and
an adapted FastSpeech 2 model to show (1) over-smoothness
causes audio degradation, (2) smoothness is exaggerated on ex-
pressive speech datasets and (3) TVC-GMM is effective in re-
ducing smoothness and improving perceptual audio quality.
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Figure 3: Aligned synthesized mel-spectrogram samples for all datasets and models. FastSpeech 2 models are visibly oversmooth, while
TVC-GMM models are closer to ground-truth. Conditional sampling reduces the sampling noise introduced by naive sampling.

4.1. Datasets & Model Details

We report results for three expressive English datasets. We asses
expressiveness by pitch range since FastSpeech 2 spreads its
bins evenly (Figure 4). (1) LJSpeech [17] is the least expressive
and contains 13k (24h) quite monotone samples from a single
female speaker. It is the standard evaluation set for many TTS
models. (2) VCTK [18] contains 88k (44h, 20min/speaker)
samples from 109 English speakers with various accents, de-
liberately selected for contextual and phonetic coverage. (3)
LibriTTS [19] is the standard multi-speaker dataset for TTS
models. We use the train-clean-360 split covering 115k (192h,
15min/speaker) samples from 904 speakers and the largest ex-
pressive range in our comparison. We set aside a test set of 512
samples per dataset for evaluation, spoken by seen speakers.

We adapt the FastSpeech 2 implementation2 of [20] as fol-
lows: We reduce encoder and decoder stacks to 4 layers with 2
attention heads and remove the postnet as it is not in the original
paper and preliminary experiments did not show significant im-
pact. We also rearrange the variance predictors to run in parallel
to better disentangle pitch and energy conditioning. To further
improve controllability, we feed the mean external conditioning
signal into the predictor during training to encourage it to focus
on the variation around this “prosody baseline”. These changes
do not affect the mechanism of variance conditioning, as we
still learn a fixed set of pitch and energy embeddings. However,
during inference we can now control pitch and energy more
targeted by setting the prosody baseline instead of scaling the
predictors outputs. As vocoder we use the HiFiGAN V1 uni-
versal checkpoint and the LJSpeech checkpoint for LJSpeech
experiments. We train all models 40k steps on a single Nvidia
GeForce RTX 2080ti using NLL loss as described in Section
3.2. FastSpeech 2 has 29.12M parameters, TVC-GMM [k=1]
29.43M (+1%) and TVC-GMM [k=5] 30.25M (+4%). Aver-
age training time for TVC-GMM was 2.51 ± 0.97 hours and
for FastSpeech 2 2.03± 0.87 hours. TVC-GMM [k=5] is only
0.8% slower in inference than FastSpeech 2, mainly due to the
enlarged last layer and sampling.

4.2. Insufficient modelling degrades reconstruction quality

Modelling conditional averages in multi-valued mappings leads
to smooth spectrogram predictions that also visually lie some-

2we adapt https://github.com/ming024/FastSpeech2/tree/d4e79e

where between two possible realisations (Figure 3). We use
a filter kernel to artificially smooth (gaussian, σ = 1.0) and
sharpen (laplacian, s = 1) the ground-truth spectrograms
and calculate the change in perceptual speech quality [21]
(PESQ) and perceptual audio distance [22] (CDPAM) relative
to the ground-truth audio (Table 1). Following [13], we mea-
sure smoothness by the variance of the Laplacian-filtered mel-
spectrogram VarL [23]. A lower VarL indicates more smooth-
ness. We observe characteristic “metallic” (over-smooth) and
“bubbling” (over-sharp) artefacts in the audio reconstruction
across popular vocoder models3. Generally, over-sharpness is
better tolerated. As a naive way to reduce artefacts, we also ex-
periment with fine-tuning HifiGAN (+finetuned) on smoothed
LJSpeech to better tolerate smoothed spectrograms. We find it
increases smoothness tolerance on all datasets, however, it also
decreases performance on GT spectrograms and requires addi-
tional effort for every practical application.
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Figure 4: Pitch range of datasets. LibriTTS and VCTK are more
diverse than LJSpeech.

4.3. Smoothness is exaggerated for expressive speech

Intuitively, the problem of over-smoothness can be exaggerated
for expressive datasets and under prosody control when distri-
butions are under-conditioned and more or further apart modes
are averaged. Indeed, in Table 2 we report lower VarL for Lib-
riTTS samples generated by FastSpeech 2 than for LJSpeech
samples and a larger drop in CDPAM relative to GT audio. As
Figure 4 demonstrates, LJSpeech has a comparably small pitch
range and models trained on more expressive datasets such as
VCTK and LibriTTS have to cover a larger diversity with the
same number of conditioning bins.

3audio demo at https://sony.github.io/ai-research-code/tvc-gmm
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Table 1: Mel-spectrogram smoothness measured by variance of Laplacian VarL [23] causes reduction in perceptual speech quality
(PESQ) and perceptual audio distance (CDPAM) relative to the ground-truth audio. Calculated over test sets (512 samples/dataset).
Over-smoothness/-sharpness both induce audio artefacts across vocoder architectures, but over-sharpness is tolerated better.
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h GT Spec. 0.37 -1.40 -1.48 -1.66 -2.63 -1.73 -1.09 -1.56 26.1 6.0 10.6 9.3 19.6 5.5 5.7
+ Sharpen 0.66 -1.78 -1.86 -2.73 -2.77 -2.15 -1.40 -1.89 24.0 8.2 19.4 11.6 17.1 6.5 6.9
+ Smooth 0.07 -2.57 -2.55 -1.53 -3.07 -2.77 -2.28 -2.55 30.1 10.2 5.2 15.1 23.7 10.8 8.7

V
C

T
K GT Spec. 0.36 -1.37 -1.64 -1.86 -2.49 -1.28 -1.46 -2.23 27.3 13.8 19.3 14.7 8.4 20.1 20.8

+ Sharpen 0.77 -1.76 -2.02 -2.6 -2.66 -1.82 -1.68 -2.54 26.6 16.2 25.6 14.4 9.7 18.2 18.5
+ Smooth 0.06 -2.52 -2.63 -2.01 -3.04 -2.84 -2.33 -2.72 27.9 20.1 15.5 15.9 19.2 20.7 20.5

L
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ri
T

T
S GT Spec. 0.41 -1.51 -1.69 -2.03 -2.66 -1.67 -1.63 -2.24 27.8 12.1 17.5 10.2 13.3 17.7 17.7

+ Sharpen 0.66 -1.79 -2.06 -2.83 -2.82 -2.11 -1.82 -2.49 27.4 14.3 24.9 11.8 13.3 16.3 16.6
+ Smooth 0.08 -2.68 -2.71 -2.13 -3.16 -2.98 -2.59 -2.91 30.3 18.2 14.4 15.7 20.1 19.6 18.3

* PESQ wide-band (16kHz), mapped to MOS-LQO (1.02 - 4.64 scale) following ITU-T P.862.2

4.4. TVC-GMM improves perceptual audio quality

To evaluate the effectiveness of TVC-GMM, we calculate the
smoothness of synthesized mel-spectrograms and evaluate the
reconstructed audio in objective and subjective studies. As
acoustic models we compare FastSpeech 2 and TVC-GMM
models with 1 or 5 modes and naive or conditional sampling.
For objective evaluation only (Table 2), we fix the phoneme du-
ration prediction to align with the ground-truth audio and report
the perceptual audio distance CDPAM [22]. This metric is ex-
plicitly designed for TTS evaluation and shown to pick up on
audio artefacts missed by other metrics, but perceived by hu-
mans. For subjective evaluation (Table 3), we randomly select
5 test samples per dataset, synthesise FastSpeech 2 and TVC-
GMM audio and ask 19 proficient english speakers to rate the
overall quality in terms of acoustic quality and prosodic diver-
sity on a Likert-Scale of 1-5. We let them compare between the
models and include the ground-truth vocoder reconstruction as
upper anchor as this is the best an acoustic model can achieve.

We find modelling with TVC-GMM reduces the smooth-
ness of sampled spectrograms and in turn reduces the acous-
tic artefacts in the vocoder reconstruction. This is evident in
the first block of Table 2, where a higher VarL indicates that
spectrograms generated by TVC-GMM models are less smooth.
However, naive sampling from TVC-GMM yields over-sharp
spectrograms with a VarL far above ground-truth, which we at-
tribute to sampling noise. Consequently, we use conditional
sampling to reduce noise and improve perceptual audio simi-
larity in particular on the expressive LibriTTS dataset (Table 2,
last column). Despite only naive sampling being available for
the MOS study, TVC-GMM outperforms in subjective evalua-
tion as well. Note, however, that a significant gap to the GT
remains, especially for LibriTTS. We believe this gap is largely
due to the duration and variance prediction that control prosody.

5. Conclusion & Future Work
Despite external pitch and energy conditioning, we observe
audio artefacts caused by over-smooth mel-spectrogram pre-
dictions in FastSpeech 2, in particular in expressive speech
datasets. We conclude that this is due to insufficient modelling

Table 2: VarL and Perceptual Audio Distance (CDPAM) be-
tween ground-truth audio and HiFiGAN reconstruction from
synthesis with TVC-GMM models and FastSpeech 2. Our TVC-
GMM with both naive and conditional sampling outperforms.
Bold values indicate VarL closest to GT and lowest CDPAM.

VarL CDPAM ×102 ↓
LJS VCTK LTTS LJS VCTK LTTS

GT (HiFiGAN) 0.37 0.36 0.41 6.0 13.8 12.1

FastSpeech 2 0.23 0.25 0.21 11.0 19.7 22.1
TVC-GMM [k=1] 0.45 0.58 0.64 10.4 19.6 21.0
+ cond. sampling 0.43 0.52 0.56 10.4 18.5 18.7
TVC-GMM [k=5] 0.44 0.60 0.63 10.2 19.5 20.1
+ cond. sampling 0.43 0.56 0.55 10.1 18.5 18.5

Table 3: In subjective evaluation TVC-GMM (naive sampling)
outperforms FastSpeech 2 in Mean Opinion Score (MOS).

MOS ↑
LJSpeech VCTK LibriTTS

GT (HiFiGAN) 3.87 ±0.02 3.90 ±0.03 3.80 ±0.05

FastSpeech 2 3.54 ±0.04 3.43 ±0.05 3.23 ±0.04
TVC-GMM [k=1] 3.69 ±0.03 3.61 ±0.04 3.39 ±0.04
TVC-GMM [k=5] 3.72 ±0.03 3.64 ±0.04 3.41 ±0.04

of the inherently multimodal natural speech distribution. To
model the residual multimodality after conditioning, we pro-
pose TVC-GMM which predicts trivariate-chain gaussian dis-
tributions in the mel-spectrograms and improves perceptual au-
dio quality under objective and subjective evaluation. We target
research and practical applications with a compromise between
training effort and quality as TVC-GMM is naturally limited in
the number of modes that can be modelled. We also acknowl-
edge that TVC-GMM introduces a new class of sharpness arte-
facts, but attribute them to sampling noise, which unlike over-
smoothness is not a model limitation. We thus plan to investi-
gate more sophisticated sampling strategies in future work.
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