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Abstract
In speech communication, talkers regulate vocal intensity

resulting in speech signals of different intensity categories (e.g.,
soft, loud). Intensity category carries important information
about the speaker’s health and emotions. However, many
speech databases lack calibration information, and therefore
sound pressure level cannot be measured from the recorded
data. Machine learning, however, can be used in intensity cate-
gory classification even though calibration information is not
available. This study investigates pre-trained model embed-
dings (Wav2vec2 and Whisper) in classification of vocal inten-
sity category (soft, normal, loud, and very loud) from speech
signals expressed using arbitrary amplitude scales. We use a
new database consisting of two speaking tasks (sentence and
paragraph). Support vector machine is used as a classifier.
Our results show that the pre-trained model embeddings out-
performed three baseline features, providing improvements of
up to 7%(absolute) in accuracy.
Index Terms: Vocal intensity, sound pressure level, paralin-
guistics, Wav2vec2, Whisper.

1. Introduction
In speech communication, speakers frequently adjust their vo-
cal intensity for various reasons, such as to emphasize some-
thing, to make spoken messages audible in noisy environments
or when speaking over long distances, or to express emotions
like anger or sadness. In contrast to audio equipment, which
alter sound intensity by solely increasing or decreasing the gain
of the signal, the human speech production mechanism changes
several characteristics (e.g., pitch, spectral tilt, duration) of the
produced acoustical signal in the regulation of vocal intensity
[1]. Vocal intensity is typically quantified in sound pressure
level (SPL) measured using a sound level meter [2]. In this
study, we use the term “vocal intensity” (widely used in speech
acoustics and voice research (e.g. [1]) instead of the term “vo-
cal effort” (used in phonetics [3]). We regard these two terms
synonymous.

Speech carries plenty of paralinguistic information, includ-
ing vocal emotions, age, gender, and dialect [4, 5, 6]. Paralin-
guistic information can be divided into speaker traits (e.g., gen-
der, age) and speaker states (e.g., emotions, state of health) [7].
Accurate classification of vocal intensity from speech signals is
beneficial in paralinguistic research, particularly in biomarking
the speaker’s state of health [8, 9]. Many speech disorders, such
as vocal hyperfunction and dysphonia, have a detrimental effect
on the regulation of vocal intensity. Hence, vocal intensity cate-
gory of speech carries valuable information about the speaker’s
state of health and this information could be used, for example,
in studying speech-based biomarking of health. Current par-

alinguistic speech databases, however, lack information about
the intensity category or SPL used by the speaker in the data
recording. Since speech recordings are mainly collected with-
out calibration information and the data is saved using arbitrary
amplitude scales, the measurement of intensity category/SPL
from the saved speech signals is not possible after the record-
ings. However, machine learning (ML) -based methods can in
principle be used to automatically classify intensity category of
speech despite the signal has been recorded without calibration
information [10].

Most of the previous studies on automatic classification of
vocal intensity category have addressed detection of a single vo-
cal intensity class, particularly whispering and shouting, from
speech of normal intensity (i.e., studying a binary classification
problem) (e.g., [11, 12]). However, only a few studies have in-
vestigated automatic classification of multiple vocal intensity
categories (i.e., studying a multi-class classification problem).
In [13], vocal intensity was classified into five different cate-
gories (whisper, soft, normal, loud, and shout). The authors
developed an automatic classification system using the mel-
frequency cepstral coefficient (MFCC) feature and the Gaus-
sian mixture model (GMM) as a classifier. Classification of the
same five intensity classes was also studied in [14] using the
MFCC feature and support vector machine (SVM), Gaussian as
well as Bayesian classifiers. However, the datasets used both in
[13] and in [14] include small numbers of speakers (12 in [13];
13 in [14]) and there were no female speakers in either studies.
Moreover, in both of these previous studies, only MFCCs were
used as the feature. Therefore, new research is needed in the
study of automatic classification of intensity category of speech
by including multiple intensity categories and more advanced
neural net models, and by studying larger amounts of speech
data produced by both female and male talkers.

Pre-trained models that have resulted from recent develop-
ments in deep learning are becoming popular in many areas of
speech technology [15, 16, 17]. The use of pre-trained models
constitute an attractive tool particularly in areas such as par-
alinguistics where speech dataset are typically small. In these
areas, the use of pre-trained models enables utilising deep neu-
ral nets that are first trained in an area (such as ASR) where
large datasets of speech exist and later used in an area (such as
paralinguistics) where training data is less. Several approaches
have been employed to utilise pre-trained models, including the
use of them in feature extraction, fine-tuning, and in autoen-
coders [18, 19, 20]. Examples of application areas where pre-
trained models have been used recently are emotion recogni-
tion [21] as well as detection of stuttering [17] and pathological
speech [22] indicating that these models have potential uses in
paralinguistics.

In this study, we investigate the use of two state-of-the-art
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Figure 1: Illustration of the mel-spectrogram for speech produced in the SENT task by a male speaker in (a) soft, (b) normal, (c) loud,
and (d) very loud intensity category.

pre-trained models namely, Wav2vec2 [15] and Whisper [16],
as feature embeddings in automatic intensity category classifi-
cation. To the best of our knowledge, pre-trained model embed-
dings have not been studied before for this task. We use a re-
cently published, balanced speech corpus [10], which includes a
large number of speakers (50), four intensity classes (soft, nor-
mal, loud, and very loud), and two speaking tasks (sentence and
paragraph reading).

The main objectives of this study are as follows:

• To investigate the effectiveness of layer-wise Wav2vec2 and
Whisper model embeddings in automatic classification of vo-
cal intensity category (soft, normal, loud, and very loud) from
speech signals that are expressed using an arbitrary amplitude
scale with no SPL calibration information.

• To investigate the effect of the speaking task (sentence vs.
paragraph reading) in automatic classification of vocal inten-
sity category.

The paper is organized as follows. Section 2 describes the
dataset used in this study. Section 3 explains the steps involved
in the experimental setup. Section 4 reports the results. Finally,
Section 5 concludes the study by summarizing the findings, and
future work.

2. Dataset
In this study, we use a new publicly available dataset, which
includes speech produced in English using four intensity cat-
egories (soft, normal, loud, and very loud) [10]. The dataset
comprises recordings of 50 speakers (25 male and 25 female).
For the male speakers, the age range is between 20 and 38
years, for the female speakers, the age range is between 21
and 31 years. The data was collected using two speaking
tasks, the sentence reading task (denoted as SENT) and the
paragraph reading task (denoted as PARA). In SENT, each
speaker recited 25 isolated sentences in all four intensity cat-
egories. The orthographic transcriptions of the sentences were
taken from the TIMIT database [23]. In PARA, the speakers
recited two different paragraphs using the four intensity cate-
gories. The first paragraph was taken from a weather forecast
excerpt [24] and the second paragraph was taken from a novel
[25]. All the tasks were repeated two times by each speaker.
For more details about the dataset, the reader is referred to
https://bit.ly/3tLPGRx.

The SENT speaking task includes 10,000 sound files (25
sentences * 50 speakers * 4 intensity categories * 2 repetitions),
with 2,500 files per each intensity category. The PARA speak-
ing task comprises 800 sound files (2 paragraphs * 50 speakers
* 4 intensity categories * 2 repetitions), with 200 files per each

intensity category. Every sample of SENT and PARA was la-
beled using the target intensity category adopted by the speaker
in the production of the corresponding signal in the recordings.

3. Experimental Setup
We use a vocal intensity classification pipeline system, which
consists of three stages: pre-processing and normalization, fea-
ture extraction, and classification. The individual stages of
the system are described in sub-sections 3.1, 3.2, and 3.3. A
schematic diagram of the pipeline system studied is shown in
Figure 2.

Figure 2: Block diagram of the proposed automatic vocal inten-
sity classification system.

3.1. Pre-processing and normalization

In this stage, the entire speech signal (a sentence in the SENT
task and a paragraph in the PARA task) is pre-processed to re-
move silence regions. The removal of silence is performed us-
ing the sound exchange (SoX) method [26]. After the silence
removal, every signal is normalized by dividing the signal by its
maximum amplitude value. This normalization is done in order
to study the scenario described at the end of the 2nd paragraph
of Section 1. The original intensity information present in the
level/gain of the signal is intentionally removed by this normal-
ization procedure. Therefore, all the signals resulting from this
stage are represented on arbitrary amplitude scales, and they can
be used to test and train ML models for automatic classification
of vocal intensity category in the studied scenario.

3.2. Features

In this stage, the Wav2vec2, Whisper and baseline features are
extracted from the normalized speech signals that were com-
puted in the previous stage of the pipeline. We use two state-of-
the-art pre-trained models as feature embeddings: ’Wav2Vec2-
Large-960h-Lv60 + Self-Training model’ (Wav2vec2) and
’Whisper-large-v2 model’ (Whisper) from Huggingface [27].
Wav2vec2 is trained as a self-supervised model that learns
to predict masked portions of speech from unlabeled speech
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data [15]. The data is taken from the Libri-Light and Lib-
rispeech datasets, which contain 960k hours of English speech.
Wav2vec2 has a convolutional and transformer encoder archi-
tecture. It first transforms raw speech into feature vectors, then
applies several convolutional neural network (CNN) layers and
a transformer encoder. The transformer encoder has a stack
of multiple self-attention layers that process the feature vectors
and produce encoder hidden states.

Whisper is trained as a supervised model that learns to map
speech to text from labeled speech data [16]. The data is taken
from the web and contains about 680k hours of speech in 60
languages. Whisper has an encoder-decoder transformer archi-
tecture that takes 80-channel mel-spectrograms representation
as input. The encoder consists of two CNN layers, a sinu-
soidal positional encoding, and a stack of transformer layers
(with self-attention and feed-forward layers). It outputs the en-
coder’s hidden states.

For speech classification tasks or any other downstream
tasks, the outputs of the encoder layers are taken as features and
fed to the classification head [21]. In this study, we used the
encoder-hidden states of each encoder layer as feature for the
classification of vocal intensity category. The encoder’s hidden
states are 3-D tensors (batch size, encoder sequence length,
hidden size) that represent the output of each encoder layer.
The Wav2vec2 model has a hidden unit size of 1024 and 24
transformer encoder layers while the Whisper model has a hid-
den unit size of 1280 and 32 transformer encoder layers. We
converted these 3-D tensors to 1-D tensors by averaging over
the sequence length. That is, the Wav2vec2 embeddings are
1024-D feature vectors per layer and per utterance, whereas the
Whisper embeddings are 1280-D feature vectors per layer and
per utterance.

3.2.1. Baseline features

To evaluate and compare the performance of the Wav2vec2 and
Whisper embeddings, we also included three commonly used
spectral features (spectrogram, mel-spectrogram, and MFCCs)
as baseline features. Speech signals were windowed into frames
using the Hamming window of 25 ms with a 5 ms overlap.
Spectrograms were computed using the 1024-point fast Fourier
transform (FFT) resulting in a 513-D vector. Mel-spectrogram
was computed using the 1024-point FFT and the number of mel
filters was 128, resulting in a 128-D vector. MFCCs were com-
puted by calculating a 39-D vector that included the delta and
delta-delta coefficients. Two statistics (mean and standard de-
viation) were computed for the baseline features over all the
frames of an utterance to produce a 1026-D spectrogram fea-
ture vector, a 256-D mel-spectrogram feature vector, and a 78-
D MFCC feature vector per each utterance. Figure 1 shows the
mel-spectrogram in all four intensity categories for speech pro-
duced in the SENT task by a male speaker. It can be observed
that as intensity increases from soft to very loud, harmonics be-
come more prominent and energy in higher frequency bands
also increases.

3.3. Classifier

The goal of this last stage is to first train a classifier using super-
vised learning based on the intensity class labels as well as the
studied features, and then to classify speech signals into the four
intensity categories. As a classifier, we used SVM, which is a
popular supervised ML algorithm for classification and regres-
sion tasks. The dataset was divided into training, validation, and
testing sets using the nested cross-validation, with the number

of inner and outer loops set to 5 [28]. The GroupKFold method
was implemented to split the inner and outer loops, which pre-
vents the same speaker’s data from being used simultaneously
in the training, validation, and testing sets. To fine-tune the hy-
perparameters of the SVM, GridSearchCV was used by consid-
ering a subset of three kernel types (’rbf’, ’linear’, ’poly’), and
the C and gamma values of 0.1, 1, and 10. Due to the large
number of the best-fitted hyper-parameters per each inner loop
and each setup, the resulting optimal parameter values are not
reported in this paper.

3.4. Evaluation metrics

The performance of the classifier was evaluated using accuracy
as the evaluation metric and using confusion matrices to visu-
alize misclassifications. Evaluation metrics were computed for
each outer loop and the mean and standard deviation were cal-
culated across all the loops.

4. Results
The results of the vocal intensity category classification experi-
ments are shown for the SENT and PARA speaking tasks in Ta-
ble 1 and Table 2, respectively. These tables show both the over-
all classification accuracy and the class-wise accuracies (sepa-
rately for all four intensity classes) for the baseline features and
for the two best Wav2vec2 and Whisper features. According to
Table 1, the mel-spectrogram baseline feature performed bet-
ter than the other baseline features in the SENT task, with an
overall accuracy of 64±2%. Similarly, Table 2 indicates that
the spectrogram achieved the best classification performance
among the baseline features for the PARA task, with an accu-
racy of 64±4%. Importantly, the Wav2vec2 and Whisper fea-
tures showed better performance compared to the baseline fea-
tures in both speaking tasks. This suggests that the Wav2vec2
and Whisper embeddings capture a wide range of speech char-
acteristics, leading to better classification performance. For the
SENT task, the Wav2vec2-3 and Whisper-18 features achieved
an absolute improvement of 5% and 4%, respectively, compared
to the best baseline feature. For the PARA task, the Wav2vec2-3
and Whisper-18 features provided an absolute improvement of
7% and 5%, respectively, compared to the best baseline feature.

Figure 3 shows the layer-wise performance of the
Wav2vec2 and Whisper feature (represented by the dashed line
with markers) and the best baseline feature (represented by the
dashed line without markers) for both SENT (in green) and
PARA (in blue). In most cases, the early and middle lay-
ers of Wav2vec2 (see Figure 3 (a)) outperform the best base-
line feature for both tasks. A comparison of the two speaking
tasks shows a consistently better performance for PARA com-
pared to SENT. The trend shown by the Whisper feature (see
Figure 3 (b)) suggests that this feature outperforms the base-
line features. However, the performance of the Whisper layers
varies considerably across the layers, which does not happen
for Wav2vec2. In most cases, the PARA task shows again bet-
ter performance than the SENT task. This trend is consistent for
both the Wav2vec2 and Whisper features.

Figure 4 displays confusion matrices for the best-
performing baseline feature, and for the Wav2vec2 and Whis-
per features in SENT (Figure 4 (a)) and PARA (Figure 4 (b)). In
both tasks, it can be observed that Wav2vec2 showed fewer mis-
classifications between classes than the other features. In addi-
tion, all confusion matrices reveal that most misclassifications
occur between loud and very loud speech, and the outermost
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Figure 3: Layer-wise Wav2vec2 (a) and Whisper (b) features for
the SENT and PARA tasks with the best baseline feature. The
blue and green lines represent SENT and PARA, respectively.
The dashed lines without markers indicate the baseline feature,
while the dashed lines with markers represent the Wav2vec2 and
Whisper feature.

categories have a lower rate of misclassifications.

5. Conclusions
In this study, we investigated the use of two pre-trained models
(Wav2vec2 and Whisper) as feature embeddings in automatic
classification of vocal intensity category (soft, normal, loud,
very loud) from speech signals expressed on arbitrary amplitude
scales. The experiments were carried using a new corpus con-
sisting of speech of 50 talkers produced in four intensity cate-
gories using two speaking tasks (SENT and PARA). The exper-
iments with the SVM classifier revealed that both the Wav2vec2
and Whisper features outperformed the baseline features (spec-
trogram, mel-spectrogram, and MFCC) in both speaking tasks.
These findings suggest that pre-trained model embeddings are
valuable features in classification of intensity class, and they can
potentially be used in paralinguistic research (e.g., in biomark-

Table 1: Classification accuracy results and class-wise accura-
cies for vocal intensity classification using three baseline fea-
tures and two top-performing Wav2vec2 and Whisper features
for the SENT task. ACC denotes accuracy and C denotes class.

Feature ACC [%] Csoft Cnormal Cloud Cveryloud

Baseline features
Spectrogram 62±2 82 60 42 64
Mel-spectrogram 64±2 82 62 47 65
MFCCs 61±2 81 56 45 64

Wav2vec2 feature
Wav2vec2-3 69±2 80 74 58 62
Wav2vec2-4 69±2 80 74 58 64

Whisper feature
Whisper-18 68±2 81 71 51 68
Whisper-19 67±2 83 68 51 68
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Figure 4: Confusion matrices of the best baseline, Wav2vec2,
and Whisper features for both SENT and PARA.

Table 2: Classification accuracy results and class-wise accura-
cies for vocal intensity classification using three baseline fea-
tures and two top-performing Wav2vec2 and Whisper features
for the PARA task. ACC denotes accuracy and C denotes class.

Feature ACC [%] Csoft Cnormal Cloud Cveryloud

Baseline feature
Spectrogram 64±4 81 57 53 67
Mel-spectrogram 63±5 77 58 52 66
MFCCs 63±3 78 61 44 71

Wav2vec2 feature
Wav2vec2-0 71±8 84 74 59 67
Wav2vec2-10 70±5 84 74 59 67

Whisper feature
Whisper-4 69±5 80 67 50 71
Whisper-21 69±5 77 65 57 79

ing the speaker’s state of health) in scenarios where calibration
information is not available and speech is expressed using ar-
bitrary amplitude scales. Between the speaking tasks, PARA
showed better performance than SENT in most cases, which
may be due to different number of spoken words in the two
tasks. However, further investigations are needed to study the
effect of spoken words and the non-uniform distribution of in-
tensity category information over time. Moreover, exploring
using fusion techniques that fully leverage the effects of both
pre-trained and baseline features, and fine-tuning of the models
could be studied in the future. For example, it might be ben-
eficial to fine-tune the last layers of the Wav2vec2 model, as
they are more closely related to lexical contents, which is im-
portant in ASR, but which may not be useful in the classifica-
tion of vocal intensity category. Advanced neural networks like
time-based attention-based models can also be used to improve
classification performance.
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[2] J. G. Švec and S. Granqvist, “Tutorial and guidelines on mea-
surement of sound pressure level in voice and speech,” Journal of
Speech, Language and Hearing Research, vol. 61, pp. 441–461,
2018.

[3] H. Traunmüller and A. Eriksson, “Acoustic effects of variation in
vocal effort by men, women, and children,” The Journal of the
Acoustical Society of America, vol. 107, no. 6, pp. 3438–3451,
2000.

[4] J. P. Arias, C. Busso, and N. B. Yoma, “Shape-based modeling
of the fundamental frequency contour for emotion detection in
speech,” Computer Speech & Language, vol. 28, no. 1, pp. 278–
294, 2014.

[5] N. Campbell and P. Mokhtari, “Voice quality: the 4th prosodic
dimension,” in 15th ICPhS, 2003, pp. 2417–2420.

[6] S. J. Park, A. Afshan, Z. M. Chua, and A. Alwan, “Using voice
quality supervectors for affect identification.” in Interspeech,
2018, pp. 157–161.

[7] B. Schuller and A. Batliner, Computational Paralinguistics: Emo-
tion, Affect and Personality in Speech and Language Processing.
John Wiley & Sons, 2013.

[8] J. P. Clark, S. G. Adams, A. D. Dykstra, S. Moodie, and M. Jog,
“Loudness perception and speech intensity control in Parkinson’s
disease,” Journal of Communication Disorders, vol. 51, pp. 1–12,
2014.

[9] M. Brockmann-Bauser, J. H. Van Stan, M. C. Sampaio, J. E.
Bohlender, R. E. Hillman, and D. D. Mehta, “Effects of vocal in-
tensity and fundamental frequency on cepstral peak prominence in
patients with voice disorders and vocally healthy controls,” Jour-
nal of Voice, vol. 35, no. 3, pp. 411–417, 2021.

[10] M. Kodali, S. R. Kadiri, L. Laaksonen, and P. Alku, “Automatic
classification of vocal intensity category from speech,” in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[11] C. Zhang and J. H. L. Hansen, “Whisper-island detection based
on unsupervised segmentation with entropy-based speech feature
processing,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 19, pp. 883–894, 2011.

[12] J. Pohjalainen, T. Raitio, S. Yrttiaho, and P. Alku, “Detection of
shouted speech in noise: human and machine,” Journal of the
Acoustical Society of America, vol. 133, pp. 2377–2389, 2013.

[13] C. Zhang and J. H. Hansen, “Analysis and classification of speech
mode: whispered through shouted,” in The Eighth Annual Con-
ference of the International Speech Communication Association,
2007.

[14] P. Zelinka, M. Sigmund, and J. Schimmel, “Impact of vocal effort
variability on automatic speech recognition,” Speech Communica-
tion, vol. 54, no. 6, pp. 732–742, 2012.

[15] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” in Advances in Neural Information Processing Systems,
vol. 33, 2020, pp. 12 449–12 460.

[16] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey,
and I. Sutskever, “Robust speech recognition via large-
scale weak supervision,” 2022. [Online]. Available: https:
//arxiv.org/abs/2212.04356
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