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Abstract
We present a new adversarial training method called General-
purpose adversarial training (GPAT) that enhances the perfor-
mance of automatic speech recognition models. In GPAT, we
propose the followings: (1) a plausible adversarial examples
converter (PAC); (2) a distribution matching regularization term
(DM reg.). Compared to previous studies that directly com-
pute gradients with respect to the input, PAC incorporates non-
linearity to achieve performance improvement while eliminat-
ing the need for extra forward passes. Furthermore, unlike pre-
vious studies that use fixed norms, GPAT can generate sim-
ilar yet diverse samples through DM reg. We demonstrate
that the GPAT elevates the performance of various models on
the LibriSpeech dataset. Specifically, by applying GPAT to
the conformer model, we achieved 5.3% average relative im-
provements. With respect to the wav2vec 2.0 experiments, our
method yielded a 2.0%/4.4% word error rate on the LibriSpeech
test sets without a language model.
Index Terms: speech recognition, adversarial training, data
augmentation

1. Introduction
Automatic speech recognition (ASR) has made significant
progress thanks to the development of model structures such
as transformer [1] and conformer [2], and pre-training strate-
gies such as self-supervised learning (SSL) [3–6]. However,
it is important to note that deep-learning based models tend
to overfit quickly and require a considerable amount of train-
ing data [7]. To overcome this issue and ensure high accuracy,
several data augmentation techniques have been proposed. For
instance, time-domain augmentations [8] modify the sampling
rate of an input, whereas simulation-based data augmentation
involves adding noise [9], using a room impulse response func-
tion to simulate point sources spread in space [10], or vocal
tract length perturbation [11]. Moreover, SpecAugment [12],
which demonstrates promising performance, has been proposed
by masking the time and frequency axes of a mel spectrogram.
Additionally, synthetic data and adversarial examples have been
suggested for data augmentation [13–21].

Meanwhile, several studies have been conducted to enhance
the generalization of models using adversarial examples in var-
ious domains. [14,15] improved image classification and object
detection using adversarial examples. [16] applied adversarial
training to natural language processing (NLP) and achieved bet-
ter accuracy. [19] proposed virtual adversarial training (VAT)
[20] can improve ASR performance. [21] also demonstrated
that adversarial training can improve ASR performance in ac-
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Figure 1: Overview of the proposed method. (a) In the training
stage, PAC transforms clean examples into adversarial exam-
ples with similar distribution thanks to the DM reg. The target
network learns clean and adversarial examples both. We train
the target network and the PAC simultaneously. (b) At the test
step, PAC is dropped and we only use the recognition model.

cented speech. The previous studies demonstrated that adver-
sarial training can enhance performance in various domains.
However, in order to perform a single update through adver-
sarial training, an extra forward pass is necessary to obtain ad-
versarial examples, resulting in a increase in training time. Ad-
ditionally, obtaining adversarial examples requires a direct cal-
culation of gradients with respect to the inputs, which limits the
potential for performance enhancement [22] and fixed norms
are utilized in order to obtain adversarial examples which is not
suitable for the sequential data.

To address this issue, we propose general-purpose adver-
sarial training (GPAT), a simple method that can utilize ad-
versarial examples for data augmentation to enhance the gen-
eralization of the ASR models. As shown in Figure 1, GPAT
has two novel components: (1) a plausible adversarial example
converter (PAC) that converts clean examples into adversarial
ones and feeds them as training data for the ASR model; (2)
a distribution-matching regularization term (DM reg.) that is
designed to alleviate the distribution mismatch problem [14].
Compared to previous studies that obtained adversarial exam-
ples by directly calculating gradients with respect to the in-
puts, GPAT utilizes PAC with non-linearity, enabling further
enhanced performance. Moreover, generating adversarial ex-
amples through the use of PAC does not require repetitive for-
ward passes. Additionally, by utilizing DM reg., distribution
mismatch problem between adversarial and clean examples [14]
addressed, thus allowing for stable training.

We apply GPAT to self-supervised models and attention-
based encoder-decoder (AED), demonstrating improved perfor-
mance through adversarial training with GPAT in general situ-
ations. For example, AED model trained with GPAT achieved
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2.2%/5.0% word error rate (WER), beating its vanilla counter-
part by 4.5%/3.8% relative reduction on the LibriSpeech [23]
test-clean and test-other subsets. The improvement achieved
by GPAT was more notable when applied to the self-supervised
models. GPAT helped wav2vec 2.0 BASE gain a relative aver-
age improvement of 7.7 % on the LibriSpeech two subsets.

2. Adversarial training
Adversarial training, which trains the target network with ad-
versarial examples, usually focuses on defending against adver-
sarial attacks [24]. However, recent studies have shown that
adversarial examples are useful for data augmentation and en-
hance model performance. For example, [14] showed that ad-
versarial examples with a similar distribution to clean ones can
improve model generalization. [16] applied adversarial training
to NLP and achieved better standard accuracy. Moreover, ad-
versarial training for data augmentation in ASR is usually stud-
ied for specific situations. [17] showed that adversarial training
can bring better accuracy to disordered speech. Other studies
have demonstrated that adversarial training is helpful in situa-
tions with noisy [18] or accented [21] speech. In general situ-
ations, the application of VAT as a form of data augmentation
by [19] led to improved ASR performance.

However, previous studies have required the computation
of gradients with respect to the input in order to obtain adver-
sarial examples. Consequently, obtaining adversarial examples
requires additional forward passes, leading to a significant in-
crease in training time. Additionally, as direct gradient calcu-
lation with respect to the input lacks non-linearity, the potential
for performance improvement may be limited [22]. Addition-
ally, adversarial noise that is added to clean input is unsuitable
for the sequential data due to the utilization of a fixed norm.

3. Proposed method
We introduce GPAT as a method of achieving improved perfor-
mance without the need for additional forward passes in adver-
sarial training. This framework comprises two key components:
(1) PAC, which transforms clean examples into adversarial ex-
amples, and (2) DM reg., a regularization term that facilitates
the generation of adversarial examples by the PAC while pre-
serving a similar distribution as clean examples. In Sec. 3.1,
we present the conventional adversarial training method, VAT,
while Sec. 3.2 delves into the PAC. In Sec. 3.3, we introduce
the training of the PAC with DM reg.

3.1. Virtual adversarial training

Virtual Adversarial Training (VAT) is a technique that calculates
adversarial perturbations (also known as noise) represented by
the vector radv , which is applied to the input xc to create an ad-
versarially enriched input xadv . The selection of radv involves
a small perturbation in the direction that maximally increases
the loss of the model. The magnitude of this adversarial noise
is a hyperparameter. The VAT regularization loss is determined
by the Kullback–Leibler divergence (KLD) [25] between the
predictions.

RV AT = KLD(p(y|xc)||p(y|xc + radv)). (1)

When applying VAT to the sequential data in [19], the noise ten-
sor radv has the same dimensions as xc. To ensure the stability
of the gradient used in the generation of radv , they calculated
it with respect to the teacher-forced training of the target vari-
able y. However, direct calculation of gradients with respect

Table 1: WER on the Librispeech test-clean/test-other of
wav2vec 2.0 BASE with or without GPAT. Both models trained
on LibriSpeech 960 h labeled dataset.

Settings wav2vec 2.0 BASE wav2vec 2.0 BASE + GPAT

WER(%) 3.40 / 8.56 3.21 / 8.23

wav2vec 2.0 BASE wav2vec 2.0 BASE + GPAT

Figure 2: Loss landscape of wav2vec 2.0 BASE with or without
GPAT on LirbriSpeech 960 h. The models are trained on Lib-
riSpeech 960 h labeled dataset. Visualization tools are provided
by [26]

to the inputs limits the potential for performance enhancement.
And since they compute the adversarial noise while keeping the
norm fixed, the intensity of the noise would vary depending on
the sequential data. Furthermore, an additional forward pass is
required to compute the adversarial noise.

3.2. Plausible adversarial examples converter

To eliminate redundant forward passes and introducing non-
linearity, we propose a plausible adversarial examples converter
(PAC). PAC is a simple network that transforms clean exam-
ples into adversarial ones. As illustrated in Figure 1, the PAC is
composed of six blocks, where the block module consists of 1d-
Conv, layer-norm, and GELU activation. There are a negligible
number of parameters for network training, for example, 0.1%
more parameters than the baseline on wav2vec 2.0 LARGE. In
the test step, this additional auxiliary network is dropped and we
only use the baseline model for inference. Compared to the con-
ventional method of directly computing gradients with respect
to the input, PAC incorporates non-linearity to generate adver-
sarial examples, resulting in greater performance improvement.
Additionally, the PAC is capable of generating adversarial ex-
amples without requiring any additional forward passes on the
target network.

3.3. Distribution-matching regularization

We improve the generalization of ASR models by extending the
adversarial loss with a new distribution-matching regularization
term denoted by DM reg. As previously mentioned, the con-
ventional approach requires a hyperparameter to determine the
norm of the adversarial noise, which remains fixed regardless of
the length of the sequential data (e.g., time), resulting in varying
noise intensity. To address this issue, we use DM reg. to ensure
that the adversarial examples generated by PAC are implicitly
similar to clean examples. The term is formulated as follows:

RDM =
1

NT

N∑

n=1

T∑

t=1

|PAC(xnt
c )− xnt

c |22 (2)

where xnt
c represents the features for each sample n and each

time step t. In addition, N denotes the sample number of the
mini-batch and T is the total time step of each sample. Since
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the role of DM reg. is to make the adversarial examples similar
to clean ones, it can also be achieved using KLD.

The PAC should generate hard samples for the target net-
work with a similar distribution to that of clean samples. Hence,
the final loss function of the PAC, including DM reg., can be ex-
pressed as follows:

LPAC = −Ltarget + αRDM (3)

where Ltarget is the target network loss function such as con-
nectionist temporal classification (CTC) loss [27]. Also, α is a
hyperparameter to scale the adversarial loss and DM reg.

As shown in Table 1 and Figure 2, the model trained with
GPAT obtained a flatter loss landscape and low WER on Lib-
riSpeech dataset, which is commonly used for estimating the
general performance. These results exhibited that GPAT allows
the target model to smooth out diverse directions of the decision
boundary. GPAT algorithm is summarized in Algorithm 1.

Algorithm 1: Pseudo code of adversarial training us-
ing GPAT

Data: A set of clean audio with labels;
Result: Network params θ;
for each training step do

Sample a clean audio mini-batch xc with label y;
Convert clean batch into adversarial batch xa

xa ← PAC(xc; θpac)
Compute DM reg. according to Eq. 2.
Compute Lc(θ, xc, y) on clean mini-batch
Compute La(θ, θpac, xa, y) on adversarial batch
Minimize the target loss w.r.t network params
argmin

θ
Lc(θ, xa, y) + La(θ, xc, y)

Minimize the PAC loss in Eq. 3. w.r.t PAC params
argmin

θpac

−La(θpac, xa, y) + αRDM(θpac, xa, xc) .

end
return θ

4. Experiments
To verify GPAT can enhance the ASR model generalization,
we used the LibriSpeech dataset, which contains 960 h of
speech from public-domain audiobooks. We applied GPAT
to attention-based encoder decoder (AED) and self-supervised
models. Also, we trained for 100 h and 960 h to show that GPAT
can be applied regardless of the amount of data. We utilized
the implementation from ESPNet [28] for the AED models.
We employed the self-supervised model implementations from
fairseq [29] and UniLM [30]. For a fair comparison, we adopted
the same hyperparameters with or without GPAT throughout
the training procedure and followed each recipes setting. All
the ASR models were evaluated without a language model. We
presented GPAT results in Sec. 4.1. We presented the analysis,
including comparisons with other augmentation methods, data
visualization, and ablation study, in Sec. 4.2. Experiments with
100 h dataset were performed on 4 NVIDIA A100 40GB GPUs
and large dataset were performed on Amazon SageMaker using
ml.p4d.24xlarge instance.

4.1. Results of the LibriSpeech corpus

4.1.1. Attention-based encoder decoder model results

First, we studied the effectiveness of GPAT in the AED models.
We adopted 18-layer transformer-based and conformer-based
encoders along with a 6-layer transformer-based decoder. We
utilized 80 dimension log mel spectrogram features with delta

Table 2: WER on the LibriSpeech dev/test sets without language
model when applying GPAT method.

Method train dev test Relativedataset clean other clean other
Baseline
transformer 100 h 10.8 25.0 11.3 25.3 -

960 h 4.8 11.2 5.0 10.9 -
conformer 100 h 8.3 21.4 8.6 22.0 -

960 h 2.2 5.4 2.3 5.2 -
This work
transformer 100 h 9.7 23.3 9.9 23.4 9.8 %

960 h 4.6 10.9 4.7 10.6 3.4 %
conformer 100 h 7.6 20.4 8.1 20.8 5.6 %

960 h 2.0 5.1 2.2 5.0 5.3 %

Table 3: WER on the LibriSpeech dev/test sets without lan-
guage model when applying GPAT method. * denotes our re-
implementations

Method fine-tuning dev test Relativedataset clean other clean other
Baseline
wav2vec 2.0 Base 100 h 6.1 13.5 6.1 13.3 -

960 h 3.2 8.9 3.4 8.5 -
wav2vec 2.0 Large 100 h 3.3 6.5 3.1 6.3 -

960 h 2.1 4.5 2.2 4.5 -
HuBERT Base∗ 100 h 5.4 12.8 5.4 12.5 -
WavLM Base∗ 100 h 5.9 14.5 6.1 14.3 -
data2vec Base 100 h 4.2 9.6 4.2 9.7 -
This work
wav2vec 2.0 Base 100 h 5.4 12.9 5.3 12.4 7.7 %

960 h 3.0 8.2 3.1 8.2 6.3 %
wav2vec 2.0 Large 100 h 3.1 6.3 3.1 6.1 3.1 %

960 h 2.0 4.3 2.0 4.4 4.5 %
HuBERT Base 100 h 5.1 12.3 5.2 12.1 3.9 %
WavLM Base 100 h 5.4 13.9 5.6 13.9 4.9 %
data2vec Base 100 h 4.0 9.3 4.1 9.3 3.6 %

and double-delta stacking. Setting the encoder dimension to
512, we applied SpecAugment [12] and speed perturbation [31]
to all speech samples. The PAC was placed next to the log mel
spectrogram. Therefore, the PAC receives the log mel spectro-
grams as input and provides difficult input features to the target
network. We tokenized label sentences as 500 subwords with
sentencepeice [32]. The model checkpoint for each epoch was
saved, and the final model was produced by averaging 10 check-
points with the best validation accuracy. For training stability,
a near-identity initialization is required for the PAC. Thus, we
first ran 10 epochs for 100 h and 1 epoch for 960 h to the PAC
using the DM reg only. We chose 103 as the scale parameter α.
Note that α matches the scale between the two loss terms. We
used a large number as a scale parameter because of the scale
gap between the adversarial loss and DM reg. We trained the
PAC using Adam [33] with a learning rate of 0.001. The WERs
of the recognition models are reported in Table 2 on the two of-
ficial dev and test sets. We achieved superior performance com-
pared with the baseline. Especially in 100 h training, we ob-
tained an absolute WER reduction of 1.9% on the transformer.
For LibriSpeech 960 h in conformer based model, we obtained
an average performance improvement of 5.3%.

4.1.2. Self-supervised Model Results

We adopted GPAT for self-supervised models, which have been
studied extensively recently. We followed the hyperparameter
settings of each paper and performed fine-tuning with CTC loss
on a pre-trained model. We tokenized label sentences as charac-
ters. We utilized the best validation accuracy model as the final
model. The architecture of the self-supervised model typically
consists of a feature extractor (e.g., a CNN) and an encoder
(e.g., a transformer). As the feature extractor was not trained
during fine-tuning, its output was the actual input in the fine-
tuning stage. Therefore, we placed the PAC next to the feature
extractor, and the remaining settings were the same as those in
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Table 4: Comparison with other augmentation methods. We
utilized LibriSpeech 100 h fine-tuned wav2vec2 BASE model.

Method dev test Relative Train time (h)clean other clean other
Baseline(No aug) 6.0 15.0 6.4 14.9 - 11.8

+SpecAug 6.1 13.5 6.1 13.3 7.8 % 11.8
+RIR 6.0 14.8 6.3 14.7 1.1 % 23.1
+Speed 5.8 14.6 6.3 14.6 2.4 % 34.3
+SpecAug+VAT 5.8 13.5 5.8 13.0 9.9 % 28.6
+SpecAug+GPAT 5.4 12.9 5.3 12.4 14.9 % 25.1

VAT GPAT

Figure 3: Visualization of augmented samples. Since VAT uses
fixed norm noise to generate adversarial examples, it generates
monotonous samples. On the other hand, GPAT, thanks to the
PAC and DM reg., generates diverse examples, but similar.

the end-to-end model training. We adopted GPAT for various
self-supervised models, such as wav2vec 2.0 [3], HuBERT [4],
WavLM [5], and data2vec [6]. As shown in Table 3, trained
with GPAT yielded noteworthy results for all the self-supervised
models. Note that we used the same hyperparameters described
in the respective papers, which indicates that GPAT with ap-
propriate hyperparameters can improve performance further. In
particular, GPAT increased the data2vec performance, which
yielded the best performance for the same parameters. This
demonstrates that the proposed scheme can further enhance the
state-of-the-art performance.

4.2. Analysis

4.2.1. Comparison with other augmentation methods

To demonstrate that our method achieves superior performance
improvement and enables faster training compared to other
augmentation methods, we conducted comparative experiments
with other data augmentations and adversarial training tech-
niques. We conducted experiments on wav2vec2 BASE 100
h fine-tuning with various augmentation methods. We trained
221 epochs and other hyperparameters for the experiments were
set as shown in [3]. As depicted in Table 4, conventional data
augmentation methods such as SpecAug, RIR, and speed per-
turbation, except for SpecAug, were found to be ineffective
in improving generalization performance. The training time
increased proportionally with the amount of data. VAT with
SpecAugment showed some performance improvement, it did
not achieve significant improvement because it used a fixed
norm for radv without considering the length of the sequen-
tial data and directly computed gradients with respect to the in-
put without incorporating non-linearity. In contrast, our method
showed performance improvement by using DM reg. to implic-
itly make adversarial examples similar to clean ones and incor-
porating non-linearity with the PAC. Although the addition of
the PAC required extra time, we achieved shorter training time
compared to VAT by eliminating redundant forward passes.

4.2.2. Visualization

To demonstrate that our method can generate more diverse ad-
versarial examples compared fixed norm noise used in VAT, we

Table 5: Effectiveness of each component of our method. The
model trained with all components of GPAT has the best perfor-
mance, especially on test sets.

Adv loss DM reg. dev test Relativeclean other clean other
Baseline 6.1 13.5 6.1 13.3 -

✓ 6.2 14.0 6.4 13.7 -3.3 %
✓ 5.9 13.2 5.8 12.9 3.1 %

✓ ✓ 5.4 12.9 5.3 12.4 7.8 %

visualized the adversarial augmented samples using t-SNE [34].
We used a wav2vec2 BASE 100 h fine-tuned model for the ex-
periments, and since the adversarial examples were generated
in every epoch, we visualized all generated data. We randomly
sampled 200 utterances from the training set and performed t-
sne after padding to match the shape of the data to the longest
utterance. Since VAT uses fixed norm noise, it generated data on
a fixed distance sphere. As a result, Figure 3 exhibited that VAT
generated monotonous samples. In contrast, our method gen-
erated diverse samples by not limiting adversarial noise with a
fixed norm and using DM reg. to make adversarial examples
similar to clean ones. This makes the decision boundary more
distinguishable, resulting in a flatter loss landscape as shown in
Figure 2 and better performance improvement.

4.2.3. Ablation Study

To isolate the effects of the PAC and DM reg., we conducted an
ablation study as shown in Table 5. We fine-tuned the wav2vec
2.0 BASE model using the LibriSpeech 100 h subset. As shown
in Table 5, using only adversarial loss, we could not achieve per-
formance improvement because distribution matching was not
guaranteed. When using only DM reg., we could improve the
model performance. However, we observed that without adver-
sarial loss, the output of the PAC was the same as the input after
a few epochs. Thus, the performance improvement was lower
than that of GPAT because of the lack of diversity. We could
boost the recognition model by employing adversarial loss and
DM reg. In summary, GPAT with the addition of non-linearity
outperformed other methods and achieved the highest level of
performance without using fixed norm noise.

5. Conclusion
Previous studies have commonly used adversarial examples
for specific situations. However, they generated adversarial
examples using fixed norm, which is not suitable for the se-
quential data, along with additional forward passes. Moreover,
the absence of non-linearity in generating adversarial examples
constrained the enhancements in performance. Here, we offer
a different perspective: by using the PAC, we introduced non-
linearity and eliminated the need for additional forward passes,
enabling faster learning, and by using DM reg., we generated
adversarial examples that are similar to clean samples without
fixed norm. Through extensive experiments, we demonstrated
that GPAT can be applied not only to AED models but also
to recently proposed self-supervised models. Moreover,
we confirmed that our method achieves significant perfor-
mance improvement compared to other augmentation methods
and generates similar yet diverse samples through visualization.

Acknowledgement This work was supported by Institute of Infor-
mation communications Technology Planning Evaluation (IITP) grant
funded by the Korea government(MSIT) (No. 2017-0-00474, Intelli-
gent Signal Processing for AI Speaker Voice Guardian)

892



6. References
[1] Y. Wang, A. Mohamed, D. Le, C. Liu, A. Xiao, J. Mahadeokar,

H. Huang, A. Tjandra, X. Zhang, F. Zhang et al., “Transformer-
based acoustic modeling for hybrid speech recognition,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2020, pp. 6874–6878.

[2] A. Gulati, J. Qin, C.-C. Chiu, N. Parmar, Y. Zhang, J. Yu, W. Han,
S. Wang, Z. Zhang, Y. Wu et al., “Conformer: Convolution-
augmented Transformer for Speech Recognition,” in Proc. Inter-
speech, 2020, pp. 5036–5040.

[3] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
A framework for self-supervised learning of speech representa-
tions,” in Proc. Advances in Neural Information Processing Sys-
tems (NeurIPS), vol. 33, 2020, pp. 12 449–12 460.

[4] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdi-
nov, and A. Mohamed, “HuBERT: Self-supervised speech repre-
sentation learning by masked prediction of hidden units,” in Proc.
IEEE/ACM Transactions on Audio, Speech, and Language Pro-
cessing (TASLP), vol. 29, 2021, pp. 3451–3460.

[5] S. Chen, C. Wang, Z. Chen, Y. Wu, S. Liu, Z. Chen, J. Li,
N. Kanda, T. Yoshioka, X. Xiao et al., “WavLM: Large-scale self-
supervised pre-training for full stack speech processing,” IEEE
Journal of Selected Topics in Signal Processing, 2022.

[6] A. Baevski, W.-N. Hsu, Q. Xu, A. Babu, J. Gu, and M. Auli,
“Data2vec: A general framework for self-supervised learning in
speech, vision and language,” arXiv preprint arXiv:2202.03555,
2022.

[7] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar, P. Nguyen,
Z. Chen, A. Kannan, R. J. Weiss, K. Rao, E. Gonina et al., “State-
of-the-art speech recognition with sequence-to-sequence models,”
in Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2018, pp. 4774–4778.

[8] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition,” in Sixteenth annual conference of
the international speech communication association, 2015.

[9] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al.,
“Deep speech: Scaling up end-to-end speech recognition,” arXiv
preprint arXiv:1412.5567, 2014.

[10] T. Ko, V. Peddinti, D. Povey, M. L. Seltzer, and S. Khudanpur,
“A study on data augmentation of reverberant speech for robust
speech recognition,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2017, pp.
5220–5224.

[11] N. Jaitly and G. E. Hinton, “Vocal tract length perturbation
(VTLP) improves speech recognition,” in Proc. ICML Workshop
on Deep Learning for Audio, Speech and Language, vol. 117,
2013, p. 21.

[12] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “Specaugment: A simple data augmen-
tation method for automatic speech recognition,” arXiv preprint
arXiv:1904.08779, 2019.

[13] T.-Y. Hu, M. Armandpour, A. Shrivastava, J.-H. R. Chang,
H. Koppula, and O. Tuzel, “SYNT++: Utilizing Imperfect Syn-
thetic Data to Improve Speech Recognition,” in Proc. IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP).

[14] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V.
Le, “Adversarial examples improve image recognition,” in Proc.
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020, pp. 819–828.

[15] T. Chen, Y. Cheng, Z. Gan, J. Wang, L. Wang, Z. Wang, and J. Liu,
“Adversarial feature augmentation and normalization for visual
recognition,” arXiv preprint arXiv:2103.12171, 2021.

[16] D. Wang, C. Gong, and Q. Liu, “Improving neural language mod-
eling via adversarial training,” in Proc. International Conference
on Machine Learning (ICML), 2019, pp. 6555–6565.

[17] Z. Jin, M. Geng, X. Xie, J. Yu, S. Liu, X. Liu, and H. Meng, “Ad-
versarial data augmentation for disordered speech recognition,”
arXiv preprint arXiv:2108.00899, 2021.

[18] B. Liu, S. Nie, S. Liang, W. Liu, M. Yu, L. Chen, S. Peng, C. Li
et al., “Jointly Adversarial Enhancement Training for Robust End-
to-End Speech Recognition.” in Proc. Interspeech, 2019, pp. 491–
495.

[19] G. Wang, A. Rosenberg, Z. Chen, Y. Zhang, B. Ramabhadran,
and P. J. Moreno, “Scada: Stochastic, consistent and adversarial
data augmentation to improve asr.” in INTERSPEECH, 2020, pp.
2832–2836.

[20] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii, “Virtual adver-
sarial training: a regularization method for supervised and semi-
supervised learning,” IEEE transactions on pattern analysis and
machine intelligence, vol. 41, no. 8, pp. 1979–1993, 2018.

[21] N. Das, S. Bodapati, M. Sunkara, S. Srinivasan, and D. H. Chau,
“Best of both worlds: Robust accented speech recognition with
adversarial transfer learning,” arXiv preprint arXiv:2103.05834,
2021.

[22] Y. Kim, D. Park, D. Kim, and S. Kim, “Naturalinversion: Data-
free image synthesis improving real-world consistency,” in Proc.
AAAI, vol. 36, no. 1, 2022, pp. 1201–1209.

[23] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP).

[24] H. Xu, Y. Ma, H.-C. Liu, D. Deb, H. Liu, J.-L. Tang, and A. K.
Jain, “Adversarial attacks and defenses in images, graphs and text:
A review,” International Journal of Automation and Computing,
vol. 17, no. 2, pp. 151–178, 2020.

[25] T. M. Cover, Elements of information theory. John Wiley &
Sons, 1999.

[26] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing
the loss landscape of neural nets,” in Proc. Advances in neural
information processing systems (NeurIPS), vol. 31, 2018.

[27] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Con-
nectionist temporal classification: labelling unsegmented se-
quence data with recurrent neural networks,” in Proc. Interna-
tional Conference on Machine Learning (ICML), 2006, pp. 369–
376.

[28] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno,
N. E. Y. Soplin, J. Heymann, M. Wiesner, N. Chen et al.,
“ESPnet: End-to-end speech processing toolkit,” arXiv preprint
arXiv:1804.00015, 2018.

[29] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grang-
ier, and M. Auli, “fairseq: A fast, extensible toolkit for sequence
modeling,” arXiv preprint arXiv:1904.01038, 2019.

[30] “Unilm,” https://github.com/microsoft/unilm.

[31] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmen-
tation for speech recognition,” in Sixteenth annual conference of
the international speech communication association, 2015.

[32] T. Kudo and J. Richardson, “Sentencepiece: A simple and lan-
guage independent subword tokenizer and detokenizer for neural
text processing,” arXiv preprint arXiv:1808.06226, 2018.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[34] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE.”
Journal of machine learning research, vol. 9, no. 11, 2008.

893


