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Abstract
Recent studies on music source separation have extended their
applicability to generic audio signals. Real-time applications
for music source separation are necessary to provide services
such as custom equalizers or to improve the sound of live
streaming with diverse effects. However, most prior methods
are unsuitable for real-time applications due to their high com-
putational complexity, large memory usage, or long latency. To
overcome these problems, we propose a Wave-U-Net type of
music source separation network that utilizes high-dimensional
masking for the deep latent domain features. We also introduce
a contrastive learning technique to estimate the salient latent
space embedding of each target source using a masking-based
approach. The performance of our proposed model is evalu-
ated on the MUSDB18HQ dataset in comparison with several
baselines. The experiments confirm that our proposed model is
capable of real-time processing and outperforms existing mod-
els.
Index Terms: Music source separation, Contrastive learning,
Real-time processing

1. Introduction
Music source separation refers to the task of extracting individ-
ual music sources from a mixture of signals. There are vari-
ous deep learning techniques that can be used to perform music
source separation [1–8]. Time-frequency (T-F) masking [9–14]
is a widely used technique for music source separation, but it
has some limitations. One of the main challenges is that it re-
lies on complex phase information, which can be difficult to
estimate accurately. This can lead to artifacts in the separated
sources and limit the quality of the results. Moreover, T-F mask-
ing typically requires a large number of parameters, which can
make the model difficult to train and slow to run in real-time
applications.

A natural way to overcome this issue is to process the sig-
nal directly in the time domain [3, 5, 15–19]. Time-domain
source separation models can be categorized into two types of
approaches: basis signal estimation networks and U-Net style
encoder/decoder networks. TasNet [15] is a basis signal esti-
mation network that estimates the principal components of the
input and masking values for each mixture. However, since it
operates on very short input chunks, it is difficult to utilize long-
time-interval information, which plays a crucial role in perform-
ing separation. To process long sequences efficiently, dual-path
recurrent neural networks (DPRNNs) [17] split the input se-
quence into stacks of overlapped chunks, which are then pro-
cessed in parallel using RNN layers. However, this structure
requires very high computational complexity due to processing
the short input signal continuously without temporal compres-

sion. DEMUCS [5] uses a Wave-U-Net framework that consists
of multiple layers of down-sampling and up-sampling blocks
with strided convolutional architectures. Moreover, it utilizes
recurrent processing with bi-directional long-short term mem-
ory (bLSTM) networks in the bottleneck layer to process the
temporal domain efficiently. However, this technique requires a
large number of model parameters and the long input sequences.
Since processing long input sequences causes latency problems
and requires a large amount of memory, this method is not suit-
able for real-time applications.

Recent research on neural speech enhancement/separa-
tion network has been conducted, with the aim of provid-
ing real-time functionalities by reducing the number of pa-
rameters, computational complexity, and latency of models.
DPRNNs [17] have been proposed as a simple way to model
the long sequential input, by splitting the input into short seg-
ments and applying inter-chunk RNN and intra-chunk RNN.
By combining a DPRNN with a U-Net based speech enhance-
ment network, dual-path CRN (DPCRN) [20] processes short
input segments more efficiently with small model size and low
computational cost. In [21], another Wave-U-Net-based speech
enhancement network was developed which modifies dual-path
CRN into a time-domain approach and utilizes various atten-
tion mechanisms for efficient processing of the input sequence.
This method achieved state-of-the-art performance on real-time
speech enhancement tasks with low computational complexity.
Although this method achieves good performance on speech en-
hancement, the same structure can’t show good performance in
music source separation tasks due to the complicated process-
ing performed on the deepest latent layer. Moreover, modeling
long sequential inputs is critical to processing the audio signals
rather than speech signals, as it has more diverse properties.

In this paper, we propose a novel time-domain neural mu-
sic source separation model that combines the advantages of the
basis signal estimation network and the Wave-U-Net style en-
coder/decoder network. The baseline architecture of our model
is similar to that used in [21]. We modify the entire archi-
tecture or hyper-parameters to render it more appropriate for
music source separation. Compared with other state-of-the-art
models for music source separation [22], we significantly re-
duce the number of model parameters and complexity in the
deepest latent layer. Specifically, we include a light-weight
masking-based separation network to achieve these reduction
while maintaining high separation performance. To separate
each target source’s salient features effectively, we apply con-
trastive learning [23] on the deepest latent layer. In addition,
we introduce an attention mechanism on the skip-connection
layers of the U-Net-based network to efficiently utilize deep la-
tent maskings, significantly improving source separation perfor-
mance.
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(a) Overall architecture of the proposed model (b) Masking network on bottleneck block

Figure 1: Details of the proposed Deep Latent Masking network. We apply a masking network to the bottleneck module and an attention
module to each of the skip-connection layers. Dotted lines in (a) are only used for training. The masking network consists of the intra-
and inter-chunk proceesing and MLP layers.

2. Related Works
Most recent neural audio source separation networks consist of
a U-Net style encoder, decoder, and an additional bottleneck
module. The main differences between these networks reside in
the detailed structure of each module, skip connections, and the
ways in which input signals are handled.

2.1. U-Net based music source separation networks

DEMUCS, one of the state-of-the-art models for music source
separation, has been developed based on Wave-U-Net archi-
tecture across multiple versions. [5], an early version of DE-
MUCS, uses 1D convolution layers with gated linear unit acti-
vation functions for the down-sampling blocks in the encoder
and up-sampling blocks in the decoder. The consecutive down-
sampling blocks enable efficient processing in the bottleneck
module by down-sampling long signals multiple times. More-
over, to leverage the high-dimensional down-sampled time-
domain characteristics of the input sequence in the latent do-
main, the bottleneck module used two bi-directional recurrent
neural network (RNN) layers. This method achieved high per-
formance by increasing the channel size of the bottleneck mod-
ule, significantly enhancing the resolution of multi-target music
source separation. However, this method requires a large num-
ber of model parameters and a long input sequence length (i.e.,
latency issue) due to the use of several sampling blocks with
relatively large sampling factors.

In recent versions of DEMUCS [22, 24], the signal is pro-
cessed in both the time- and frequency domains to achieve
high-quality separation performance. Using a time-domain
encoder and a frequency-domain encoder, as well as a time-
domain decoder and a frequency-domain decoder, to process
multi-domain signals at once, they successfully extended the
U-net structure to a multi-domain analysis. Although these ap-
proaches achieved high separation performance, they still face
latency issues and require a large number of model parame-
ters due to the use of multi-domain input signals with long se-
quences. However, since improving separation performance is

still a challenge, recent research has not focused on addressing
the issues of latency and high computational complexity.

2.2. Dual-path RNN on bottleneck for real-time processing

For speech enhancement, [21] introduces time-domain DPCRN
which has DPRNN [17] in the bottleneck module of the Wave-
U-Net-based network to solve the problems of latency and com-
putational complexity. After dividing a long input sequence into
overlapped shorter chunks, each chunk is passed through sub-
sampling blocks. Then, the obtained latent embeddings are used
for intra- and inter-chunk processing in the bottleneck mod-
ule. Intra-chunk processing captures local information across
the time-axis, whereas inter-chunk processing captures global
information at the same time step of each chunk.

A temporal and channel attention mechanism was also de-
signed in [21] to extract salient information from the input fea-
tures with light weight. The model can achieve real-time op-
eration with low latency because it uses input sequences of the
same length as the split chunks used during training. Although
this method achieved state-of-the-art performance on speech en-
hancement, it did not perform as well on music source separa-
tion tasks because audio signals contain more diverse charac-
teristics. This is because music signals are generally more com-
plex and contain a wider range of frequencies and timbres than
speech signals, which requires a larger number of model pa-
rameters to effectively separate the different sources in the mix-
ture. Thus, the channel size of the bottleneck block becomes an
important factor in determining separation performance. How-
ever, setting a very large channel size is not an optimal solution
because the channel size is associated with the number of the
model parameters.

3. Proposed Method
3.1. Overall structure

The objective of our proposed method is to reduce the num-
ber of model parameters and computational complexity while
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maintaining high separation performance in real-time process-
ing manner. It is not optimal to adopt the U-Net architecture
for music source separation because it uses a small number of
channels in the bottleneck module. In contrast to speech en-
hancement tasks, music source separation requires more com-
plex processing as the characteristics of music signals are more
diverse. To maintain low complexity while improving separa-
tion performance, we introduce a masking network to the bot-
tleneck module, which computes the salient feature for each tar-
get source. Since our proposed masking network disentangles
sound sources in the latent space, separation performance can
be improved significantly. Furthermore, even when the channel
of the bottleneck module is not large enough, the addition of the
masking network can still improve separation performance.

In a U-net-based architecture, the output of each encoder
block is passed to a corresponding layer in the decoder block
via a skip-connection to compensate for any information losses
caused by passing encoder and decoder sampling blocks. This is
useful when there is only one target speaker to enhance, as in the
case of normal speech enhancement. However, unlike conven-
tional U-Net-based separation networks, our proposed network
obtains target mask vectors. This technique requires performing
separation in the bottleneck module, and then the decoder re-
constructs each target source separately in the decoder network
rather than all at once, as shown in Figure 1a. Since the target
signals are generated independently of each other, the informa-
tion transferred through the skip-connection needs to be refined
appropriately for each target. We also use an attention mecha-
nism in the skip-connections to provide coherent information,
which is useful for separating each target source. This atten-
tion mechanism helps our model to capture and transfer more
compact information for generating multiple target sources.

3.2. Masking networks on the bottleneck block

We obtain the masking vectors in the bottleneck module, as
shown in Figure 1a. Our bottleneck module consists of RNN-
based chunk processing layers which utilizes sequential infor-
mation. To obtain masked salient features, we also include MLP
layers [25] at the back of the chunk processing layers. The MLP
layers comprise of three fully connected (FC) layers, and use
hyperbolic tangent as the activation function for the first and
second layers and softmax for the last layer. Through the soft-
max operation, we directly separate the target hidden features
from the hidden feature of the mixture in the latent domain. As
with real-world source separation, when all of the extracted fea-
tures are summed together, it becomes identical to the hidden
features of the input mixture.

As shown in Figure 1b, the masking network that consist
of chunk processing and MLP layers computes the same num-
ber of masks as the number of target sources. After obtain-
ing each target masking, the input hidden features are multi-
plied element-wise with the estimated masking values to obtain
a salient feature for each target source. Each of the estimated
target features is then passed through the decoder independently
to reconstruct each target audio signal. During training, both the
mixture and estimated target features (the output of the encoder)
are passed through the decoder. To make the salient maskings
more meaningful, the mixtures are reconstructed from the out-
put of the encoder using the salient features without any mask-
ing.

3.3. Attention module

To transmit the target-related information reliably, we apply an
attention module to the skip-connections. Here, we use the tar-
get feature (estimated in the bottleneck module using a masking
network) as the key and the mixture features from each layer of
the encoder as the query and value. An attention map is cal-
culated from the processing of the key and query by a 1 × 1
convolution layer, which captures information that is more rele-
vant to the target signal. Finally, the attention feature is obtained
by multiplying the attention weights with the value. The esti-
mated attention features are then transmitted to each layer of the
decoder block to generate target-related information.

This attention module is essential for our proposed model
because only a single decoder is used to generate multiple tar-
get sources by utilizing the masked hidden features. Since the
decoder independently generates the target signal (in contrast to
the conventional U-net approach), it effectively transfers target-
related information from the encoder to the decoder during the
generation process. In Section 5, we demonstrate that the ad-
dition of the attention module significantly improves separation
performance compared to only using simple skip-connections.

4. Training
To train our model, we use multi-domain loss (MDL) and com-
bination loss, as proposed in [26]. This is defined as follows:

LCL =
1

M

M∑

m=1

Lm
MDL, (1)

LMDL = LmSTFT + LMSE , (2)

where M =
∑J−1

i=1

(
J
i

)
, and J denotes the number of target

signals. Combination loss reflects all the possible combinato-
rial losses of estimated signals and prevents the estimated target
signal from leaking to other signals.

We use multi-resolution STFT loss [27] for the frequency
domain criterion and MSE loss for the time domain criterion to
achieve multi-domain loss. The FFT sizes of multi-resolution
STFT are set to (512, 1024, 2048).

We also use a contrastive loss Lcontrastive [23] for the la-
tent embeddings in the bottleneck module. Lcontrastive utilizes
the latent embeddings in the bottleneck module to reliably esti-
mate masking values and is defined as follows:

LContrastive = −
∑

i∈I

log

∑
b∈P (i) exp zi · zb/τ∑
a∈N(i) exp zi · za/τ

, (3)

where z denotes the hidden feature (Emb in Figure 1a). In
addition, i ∈ I ≡ 1, 2, · · · , N ×K, P (i) is a set of posi-
tive samples that belong to the remaining chunks of the same
target, and N(i) is a set of negative samples. The positive
and negative pairs are obtained as follows: The input audio
signal W ∈ IR2×L is split into K chunks of equal size
Sk ∈ IR2×T, k = 1, ...,K, producing K chunks per target
source. For the purpose of contrastive learning, each target em-
bedding can be treated as having K − 1 positive samples and
N×(K−1) negative samples, where N is the number of target
sources. We utilize a simple convolutional network to transform
the latent embeddings into a new domain, which make it easier
to apply the contrastive loss. This network is only used during
training. The total training loss is as follows:

Lseparator = β · LCL + (1− β) · Lcontrastive, (4)

where we set β = 0.99 in our experiments.
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Table 1: Comparison of SDR performance with other state-of-
the-art models. Models marked with an asterisk (*) indicate
their ability to operate in real-time. (MN = Masking Network,
AM = Attention Module, CT = ConTrastive learning)

Architecture Params avg. vocals drums bass other
DEMUCS v2 [5] 133.8 M 6.28 6.84 6.86 7.01 4.42

Hybrid DEMUCS [24] 83.6 M 7.68 8.13 8.24 8.76 5.59
HT DEMUCS [22] 41.4 M 7.52 7.93 7.94 8.48 5.72

Band-split RNN [28] - 8.24 10.01 9.01 7.22 6.70
Conv-TasNet* [16] 5 M 5.73 6.81 6.08 5.66 4.37
Meta-TasNet* [18] 45.4 M 5.52 6.40 5.91 5.58 4.19
Ours* (baseline) 5.1 M 4.56 4.72 4.94 5.28 3.29

+MN* 5.5 M 5.30 5.69 5.83 6.02 3.67
+AM* 5.7 M 6.15 6.57 6.76 6.94 4.31
+CT* 5.7 M 6.47 6.91 7.05 7.29 4.62

Figure 2: Salient maskings for each target on the same chunk
from the bottleneck block.

5. Experiments
5.1. Data and evaluation
We evaluated the performance of our proposed model using the
MUSDB18 dataset [29]. The dataset consists of 100 tracks for
the training set and 50 tracks for the test set, all sampled at a rate
of 44.1 kHz. For training, we randomly selected 75 tracks from
the training set, while the remaining tracks were used for val-
idation purposes. To evaluate the performance of our model,
we utilize signal-to-distortion ratios (SDRs) calculated using
the bss eval metrics [30], as defined by the SiSEC18 [31].

5.2. Experiment settings and results
Table 1 shows the performance of our proposed method and
other state-of-the-art source separation models. For fair com-
parison, we obtained the results without using any data aug-
mentation for training. We also performed ablation studies
to analyze the impact of each component of our model (i.e.,
masking networks, attention mechanism in skip-connections
and contrastive loss) Here, it is evident that each of the tech-
niques we applied significantly improves SDRs performance.
Although our proposed model does not perform well com-
pared to the Band-split RNN and hybrid-domain DEMUCS, our
model demonstrates the best performance among the real-time
processable models. In particular, our model achieves higher
performance than DEMUCS v2, which requires a long input
sequence and a large number of model parameters. All the ref-
erence models except TasNet-based models require long input
signal, which is not suitable for real-time processing due to the
long latency. Different from these models, we set the length
of the input signal to be very short to avoid the latency issues.

Table 2: Comparison of results based on different components
of the model. All models include the MN, AM and CT proposed
in our approach.

dur. (samples) depth dim. params. RTF (cpu) SDR (avg.)
512 3 128 1.4 M 0.76 4.92
512 3 256 5.7 M 3.36 5.94
512 4 256 5.7 M 1.99 5.81

1,024 4 128 1.4 M 0.81 5.39
1,024 4 256 5.7 M 1.91 6.47
1,024 5 256 5.7 M 0.88 6.18

Our model requires an input length of approximately 23.2 ms
(1, 024 samples at 44.1 kHz) on inference stage.

Table 2 shows the impact of hyper-parameters of our pro-
posed model (i.e., segment duration, depth, and dimension). We
compared the results in terms of SDRs and Real Time Fac-
tors (RTFs) which are computed on a single core of Intel(R)
core(TM) i9-10900X CPU @ 3.70GHz. The separation net-
works that use long input sequence and large bottleneck channel
size show better performance than short input and small chan-
nel size. Increasing the depth of the separation network, which
refers to the number of sampling blocks, can reduce compu-
tational complexity for a fixed input sequence length and bot-
tleneck channel size, as it shortens the temporal length of the
bottleneck. However, if the depth becomes too deep, there may
be a significant loss of temporal information, resulting in a de-
crease in performance. We performed various experiments by
changing the input length, depth, embedding dimension, and
summarize the results in Table 2.

5.3. Analysis
To conduct a more detailed analysis of our model, we plotted
salient maskings for each target source obtained within a chunk
(Fig. 2). We observed that the masking values of each source
cover different sections of the embedding. Specifically, when
the masking value of one target is high in a certain latent bin,
the masking value of the other target is low in the same bin.
This result indicates that the masking values correspond to each
source in the mixture, effectively representing specific target-
related information for separation. Since the mask values are
continuous rather than binary, our masking network can effec-
tively utilize the dimensionality of the bottleneck. This means
that our model achieves efficient source separation without the
need to increase the size of the bottleneck channel.

6. Conclusion
In this paper, we present a novel approach to music source sep-
aration based on the Wave-U-Net architecture. Our proposed
method achieves real-time processing capabilities and main-
tains a small model size while improving the separation per-
formance. In our proposed network, we estimate the latent do-
main embedding of each target source within the bottleneck
module using a masking-based approach. We use contrastive
learning on the bottleneck to obtain salient maskings. We also
employ a cross-attention module to the encoder-decoder skip-
connections to transmit information between them more effec-
tively. Our model can operate in real-time with reduced compu-
tational complexity and a smaller number of model parameters.
The experimental results demonstrate that our model achieves
the optimum balance between music source separation perfor-
mance and efficiency.
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