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Abstract
This paper introduces an end-to-end neural speech restoration
model, HD-DEMUCS, demonstrating efficacy across multiple
distortion environments. Unlike conventional approaches that
employ cascading frameworks to remove undesirable noise first
and then restore missing signal components, our model per-
forms these tasks in parallel using two heterogeneous decoder
networks. Based on the U-Net style encoder-decoder frame-
work, we attach an additional decoder so that each decoder
network performs noise suppression or restoration separately.
We carefully design each decoder architecture to operate appro-
priately depending on its objectives. Additionally, we improve
performance by leveraging a learnable weighting factor, aggre-
gating the two decoder output waveforms. Experimental re-
sults with objective metrics across various environments clearly
demonstrate the effectiveness of our approach over a single de-
coder or multi-stage systems for general speech restoration task.
Index Terms: general speech restoration, speech enhancement

1. Introduction
Speech signal is a fundamental and intuitive medium for hu-
man interaction. However, various distortions are often present
in observed speech, including background noise, reverbera-
tion, and cross-talk from other speakers. These distortions can
severely degrade the perceptual quality of input signals, posing
challenges for understanding the target speech. Additionally,
acoustic responses such as room impulse response and trans-
mission channel distortions can alter the spectral composition
of speech signal, resulting in poor clarity and intelligibility. To
address these issues, speech enhancement has become a crucial
pre-processing step that aims to improve the perceptual qual-
ity and intelligibility of input speech by mitigating undesirable
distortion effects. By enhancing speech signals, speech-based
applications, such as automatic speech recognition [1–3] and
speaker verification [4–6], can provide more accurate and reli-
able results, leading to improved user experiences.

Recent deep learning-based methods have shown remark-
able performance in speech enhancement, primarily by reduc-
ing noise and reverberation [7–9]. In [10–12], the authors have
predicted a spectrogram or spectral mask to suppress distor-
tions. In [13–15], they have attempted to generate missing com-
ponents, including spectral bands or temporal occlusions, lever-
aging the impressive predictive capability of neural networks.
Furthermore, some works have produced more realistic speech
from distorted inputs by introducing generative models such
as generative adversarial network [16, 17] and diffusion-based
score-matching method [18, 19].

In real-world scenarios, speech degradation factors do not
occur in isolation but rather in correlation with each other, in-

curring challenges in speech enhancement tasks. However,
most speech enhancement methods have traditionally focused
on processing a single distortion and have dealt with multiple
distortions by cascading several task-oriented models [20, 21],
neglecting correlations between various distortions. This fact
raises concerns that artifacts (e.g., musical noise, remaining dis-
tortions) caused by the front-end speech enhancement method
are propagated downstream, resulting in severe degradation
of post-enhancement modules. In [20], the authors have de-
fined the task of handling multiple distortions as general speech
restoration, which refers to speech restoration task in this pa-
per, solving the problem by training neural enhancement mod-
els with adversarial training. They have designed their methods
based on the analysis-and-synthesis point of view, i.e., restor-
ing mel-spectrograms by a residual U-Net structure [22] and
generating waveforms from mel-spectrograms using an ex-
tra vocoder. In [23], the authors have introduced a genera-
tive diffusion-based method that produces high-quality speech
waveforms from distorted inputs, beyond eliminating complex
distortions. Although various authors have exhibited impressive
restoration performance, further improvements are possible by
designing a neural network that considers the characteristics of
various distortion types present in the input signals.

In this paper, we propose a novel end-to-end speech
restoration network, Heterogeneous Decoders-DEMUCS (HD-
DEMUCS). Unlike traditional methods that combine sepa-
rate models to address different restoration tasks, our model
achieves improved efficiency with two parallel decoder net-
works. Our approach leverages the well-known encoder-
decoder framework, DEMUCS [24], which has demonstrated
its effectiveness in suppressing noise and reverberation. The
novelty of HD-DEMUCS mainly comes from the modification
of the decoder network, it includes two heterogeneous decoders
that are designed to perform different restoration tasks effi-
ciently. Specifically, one decoder, a suppression decoder, fo-
cuses on distortion removal by suppressing additive and convo-
lution distortions, rather than generating clean speech. In con-
trast, another decoder, a refinement decoder, is responsible for
generating clean speech with fine perceptual quality, by restor-
ing missing components on input speech. They collaborate by
providing latent features from the suppression to the refinement
decoder, as the refinement process can be addressed more effi-
ciently with enhanced features rather than solely encoded fea-
tures. Additionally, we customize the configuration of the de-
coders based on their respective restoration tasks. The final re-
stored speech waveforms are obtained by summing the outputs
of the two decoders through a fusion module. Our experiments
and ablation studies demonstrate the effectiveness of our pro-
posed method and highlight the importance of the submodules
in processing multiple distortions simultaneously.
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Figure 1: Illustration of the proposed speech restoration network, HD-DEMUCS.

(a) (b) (c)

Figure 2: Detailed structures of the modular blocks in HD-
DEMUCS: (a) Suppression; (b) Generation; (c) Fusion.

2. DEMUCS
The most relevant work to ours is DEMUCS, which was
proposed for speech enhancement task using a U-Net-based
encoder-decoder architecture. The encoder receives upsampled
time-domain distorted input speech and analyzes it through the
stack of convolutional blocks, producing a latent embedding.
The encoder and the decoder each have five convolution and de-
convolution blocks. They benefit from the large receptive fields
of strided convolution layers, resulting in improved contextual
analysis and representation capability, followed by Gated Lin-
ear Units (GLUs) [25]. Additionally, a Long Short-Term Mem-
ory (LSTM) layer between the encoder and decoder strengthens
the sequential modeling that cannot be achieved in the encoder
convolution layers. The encoder and decoder blocks are con-
nected using U-Net skip connections [26] to preserve informa-
tion during network propagation. The final enhanced speech is
obtained by downsampling the decoder output and multiplying
it by the standard deviation of the input speech.

3. Proposed model
3.1. Problem formulation

In this paper, we aim to restore speech in cases where input
speech includes background noise, reverberation, and frequency
band distortion. Here, we can formulate the input speech y as:

y = h(x ∗ r) + n, (1)

where x and n are a clean speech and background noise re-
spectively, ∗ is the convolution symbol, and r reflects the room
impulse response. Specifically, h creates spectral distortions,
modeled by a high-pass, low-pass, and band-pass filter.

3.2. Overall architecture

We propose a novel end-to-end speech enhancement network,
HD-DEMUCS, which simultaneously processes multiple dis-
tortions of diverse characteristics in input speech. We design
the overall architecture with an analysis and synthesis approach;
thus, we focus more on the functionality of decoders rather than
that of the encoder which takes the analysis stage. Therefore,

we have integrated a new decoder framework to handle the en-
coded representations. We categorize the speech restoration
task into two perspectives: suppression and refinement. Follow-
ing these perspectives, we allocate two heterogeneous decoders
to address distinct distortion types. Figure 1 illustrates the over-
all architecture of HD-DEMUCS, comprising 4 submodules: an
encoder E, a suppression decoder Ds, a refinement decoder
Dr, and a fusion block F.
Encoder. The encoder follows the well-designed architecture
of the causal DEMUCS with convolution layers of 48 hidden
channels and an LSTM layer. The encoder block consists of
five blocks, and each block consists of the convolutional layer
with a kernel size of 8 and stride of 4 followed by the GLU acti-
vation function. Before the encoder block, an upsampling layer
increases the sampling rate by a factor of 4. The encoder pro-
vides its intermediate embeddings to the suppression decoder
with skip connections (SE→Ds ). Furthermore, the suppression
decoder provides its latent embeddings, summed up with the
skip connection, to the refinement decoder (SDs→Dr ).
Suppression decoder. The objective of the suppression de-
coder is to eliminate unwanted additive or convolutive distor-
tions, such as noise and reverberation tails, from the speech
signal. To accomplish this, the decoder receives the latent em-
bedding of the encoder and computes a time-domain mask to
suppress the input signal distortions rather than estimating the
enhanced speech directly. There exist five suppression blocks
with skip connections from the encoder to prevent information
leakage. Each block of the suppression decoder, as illustrated
in Figure 2(a), consists of a series of 1-dimensional strided con-
volutional layers followed by the GLU function and transposed
convolutional layers followed by the sigmoid activation func-
tion. The kernel size and stride of the suppression block are
identical to those of the encoder. The output of the suppression
decoder, where the range is limited between 0 and 1, is multi-
plied with the input signal, suppressing unwanted components.
Refinement decoder. The purpose of the refinement decoder
is to improve the perceptual quality and intelligibility of speech
signals by refining or generating missing components. There-
fore, the output of the refinement decoder is a time-domain
speech signal, in contrast to the suppression decoder which es-
timates the mask. The refinement decoder in Figure 2(b) uti-
lizes two representations, one from the encoder output and the
other from the intermediate representations of the suppression
decoder. Compared to the encoder output, the intermediate rep-
resentation is expected to contain more refined information on
additive distortions, which improves the refinement task effi-
ciency. Although the architectural composition of the refine-
ment block is similar to that of the suppression block, there
poses a critical difference in the transposed convolution layer.
The dilation factor in the transposed convolution layer is set to
a value greater than one to increase the receptive field, as moti-
vated by [27] for bandwidth extension. We used a dilation factor
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Table 1: Objective measurements of speech restoration performance on A testset. * indicates re-implementation.

Methods # of Params. WV-MOS PESQ ESTOI COVL CSIG CBAK SRMR SI-SDR

Noisy - 2.042 1.808 0.648 2.148 2.615 1.806 -7.282 -
DEMUCS48∗ 18M 3.911 2.216 0.774 2.894 2.565 2.640 8.470 5.793
DEMUCS64∗ 33M 3.842 2.310 0.782 2.998 3.696 2.699 8.633 6.022
VoiceFixer 122M 3.954 2.122 0.685 2.554 3.095 2.167 9.301 -20.268
MetricGAN+ 2.7M 2.963 2.379 0.669 2.551 2.852 2.254 8.258 -6.743

HD-DEMUCS 24M 4.205 2.393 0.792 3.067 3.747 2.740 8.999 6.243

of (1, 3, 5, 7, 9) on the layers of each block, with the kernel size
and stride set to match those of the encoder. It allows the refine-
ment decoder to effectively enlarge the contextual information
and estimate missing components caused by the distortions.
Fusion block. To integrate the outputs of each decoder, we uti-
lize a fusion block instead of simply adding the two decoder
outputs. The fusion block, inspired by [28], employs a learn-
able weight to scale the outputs of the decoders for an effective
combination. As depicted in Figure 2(c), the two decoder out-
puts are stacked in the channel axis and passed through three
convolutional layers. Each convolution layer has a kernel size
of 3 with stride of 1. The fusion block employs a LeakyReLU
activation function and a Sigmoid output function, to constrain
the weight w to a value lower than 1. The suppression and re-
finement decoder outputs are scaled by w and (1 − w) respec-
tively, and then combined to produce the fusion block output as
follows:

x̂up = wDr(yup) + (1− w)yupDs(yup), (2)
where x̂up and yup indicate the (upsampled) restored and dis-
torted speech signal, respectively. Subsequently, the output is
downsampled by an equivalent amount as the upsampling per-
formed before the encoder, as in DEMUCS.

3.3. Training criterion

For a fair comparison with baseline methods, we adopted the
same training criteria as in DEMUCS [24]. Both our proposed
model and DEMUCS are trained by minimizing the distance be-
tween the estimated speech x̂ and the reference speech x in both
the time and frequency domains. In the time domain, we mini-
mize the Euclidean distance between waveforms as follows:

LT = ∥x− x̂∥1, (3)
For the frequency domain, we employ a multi-resolution short-
time Fourier Transform (MR-STFT) loss [29,30]. First, the esti-
mated and reference waveforms are transformed into magnitude
spectra using various STFT configurations. Then, we minimize
the distance between spectra by considering both spectral con-
vergence loss (Lsc) and log-magnitude loss (Lmag) for each
STFT resolution. The training loss on the frequency domain
can be formulated as below:

LF =
M∑

i=1

(
Li

sc +
1

T
Li

mag

)
, (4)

where M is the number of STFT configurations, and T defines
the length of the speech. For each resolution, Lsc and Lmag are
defined as:

Lsc = ∥X− X̂∥F /∥X∥F , (5)

Lmag = ∥logX− log X̂∥1, (6)
where X and X̂ are the magnitude spectra of x and x̂, ∥·∥F is
Frobenius norm. We utilize three different configurations for
the STFT, with the following parameters: number of FFT bins
of (512, 1024, 2048), hop size of (50, 120, 240), and window
length of (240, 600, 1200).

4. Experiments
4.1. Experimental settings

Datasets. We utilized the Valentini dataset [31], consisting of
the VCTK corpus with 28 English speakers [32] and the DE-
MAND noise dataset [33]. Consistent with [31], we reserved
one male and one female speaker, which were not included in
the training set, and five distinct, unseen background noises for
the test set. The signal-to-noise ratio (SNR) was randomly se-
lected between (0, 5, 10, 15) dB for the training set and (2.5,
7.5, 12.5, 17.5) dB for the test set. For the training and test sets,
we simulated reverberations using 243 and 27 types of room im-
pulse responses, respectively, from the MIT Impulse Response
Survey dataset [34]. We simulated the spectral distortions on
input speech using a low pass, high pass, and band pass filter,
and frequency drop by randomly selecting a type of filter within
Butterworth, Bessel, and elliptic types. The cut-off frequencies
of the low and high pass filters were randomly selected from
the range of 4k-7.5kHz and 10-100 Hz, respectively and use the
same range of cut-off frequencies for the bandpass filters. For
the bandlimited test sets, only the low pass filters were applied,
where cut-off frequencies are set uniformly in (4, 5, 6, 7) kHz.
We constructed 4 different subsets to exhibit the effectiveness of
our model on each distortion: N (noisy speech), R (noisy and
reverberant speech), B (band-limited speech), and A (speech
with all distortions).
Evaluation metrics. We assessed the performance of the
speech restoration task using various metrics. The speech qual-
ity is evaluated with the wide-band Perceptual Evaluation of
Speech Quality (PESQ) [35], while the speech intelligibility
was measured in extended Short-Time Objective Intelligibil-
ity (ESTOI) [36]. To evaluate speech dereverberation perfor-
mance, we used the Speech-to-Reverberation Modulation En-
ergy Ratio (SRMR) metric [37]. For the waveform reconstruc-
tion, we measured the scale-invariant signal-to-distortion ratio
(SI-SDR) [38], while the restoration performance, including
bandwidth extension, was evaluated using the Wideband Voice
Mean-Opinion-Score (WV-MOS) [39]. We also utilized com-
posite measurements to analyze the overall quality (COVL),
signal distortion (CSIG), and background noise (CBAK) [40].
A higher score on all evaluation metrics indicates an improved
performance.
Training configuration. We trained the encoder-decoder net-
work first, then added a fusion block for joint training. Before
attaching the fusion block, the outputs were combined with a
0.5 weight value. We used Adam optimizer [41] with a learning
rate of 0.0003, a cosine annealing scheduler for training.

4.2. Results

Comparison with baselines. We re-implemented two baseline
models, DEMUCS48 and DEMUCS64, using 48 and 64 hid-
den channels, for the fair performance comparison by training
in an identical environmental setting with the proposed model.
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Figure 3: Objective measurements on various distortion test sets of input, baseline, and proposed models. N , R, B, A indicate tests sets
for noisy, noisy-reverberant, bandlimited, and all three distortions, respectively. Gray, Blue, Green, and Red bars represent distorted
inputs, DEMUCS48 outputs, DEMUCS64 outputs, and HD-DEMUCS outputs, respectively.
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Figure 4: Qualitative results. Spectrogram of (a) clean speech,
(b) input speech, (c) HD-DEMUCS output, (d) Ds output, and
(e) Dr output

Table 2: Analysis of the each HD-DEMUCS decoders outputs
on A testset.

Methods WV-MOS PESQ COVL CSIG CBAK

Noisy 2.042 1.808 2.148 2.615 1.806
HD-DEMUCS 4.205 2.393 3.067 3.747 2.740

Dr output 4.198 2.279 3.035 3.719 2.486
Ds output 2.536 1.428 1.497 1.666 2.040

Additionally, we brought the pre-trained parameters of Voice-
Fixer [20] and MetricGAN+ [11] for comparisons. Table 1 dis-
plays the experimental results of comparing the baseline mod-
els with the A test set. The proposed model outperformed
the baseline models in terms of speech quality (PESQ), intel-
ligibility (ESTOI), and, particularly speech restoration (WV-
MOS). Furthermore, the composite metrics and SI-SDR re-
sults demonstrate the effectiveness of HD-DEMUCS in the sup-
pression task. We conducted a detailed analysis by compar-
ing the scores of input, DEMUCS48, DEMUCS64, and HD-
DEMUCS across subsets in Figure 3. For the SRMR metric, we
evaluated against R and A subsets, which contain reverberation
distortions. These demonstrate the proposed model exhibits ro-
bustness across various distortions and that it offers superior
performances in harsh conditions such as test sets R and A.
Analysis of decoders. In Table 2, we report the quality of out-
put waveforms of each decoder to investigate their individual
contributions to the proposed model. The results demonstrate
that the superior performance of the model is attributed to the
Dr module. The ‘Ds output’ result indicates the suppression
decoder does not produce high-quality speech signals but ex-
hibits its ability to suppress background noise in terms of the
CBAK metric. Figure 4 supports the findings of Table 2 by pre-
senting the spectrograms of the reference, distorted input, and
outputs of the decoders and HD-DEMUCS. The figures clearly
demonstrate that each decoder performs properly for its de-
signed restoration task without additional training loss to each
module. Consistent with the ‘Ds output’ results, Figure 4(d)
confirms that the poor quality of the suppression decoder re-
sults from the over-suppression issue associated with powerful
suppression of various distortions.
Ablation studies. To investigate the contribution of each mod-
ule in HD-DEMUCS, we trained several models with specific

Table 3: Ablation study for the strategy in the proposed model
on A testset.

Methods WV-MOS PESQ COVL CSIG CBAK

Noisy 2.042 1.808 2.148 2.615 1.806
HD-DEMUCS 4.205 2.393 3.067 3.747 2.740

w/o F 4.167 2.379 3.052 3.731 2.726
w/o F, SDs→Dr 3.985 2.188 2.867 3.566 2.606
w/o F, Dr 3.281 1.510 2.435 3.154 2.222
w/o F, Ds 4.111 2.235 3.034 3.719 2.710

modules selectively removed, and the results are presented in
Table 3. “w/o F” model summed up the outputs of both de-
coders without learnable weights of the fusion block. “w/o
F,SDs→Dr” model removed the skip connection between the
two decoders, but kept the skip connections SE→Ds . “w/o
F,Dr” model used only the suppression decoder with the skip
connections SE→Ds . “w/o F,Ds” used only the refinement de-
coder with the skip connections SE→Dr . The fusion block F,
aggregating the outputs of heterogeneous decoders using learn-
able weights, improves overall performance compared to using
a fixed weight of 0.5. Moreover, the absence of SDs→Dr re-
vealed a noticeable drop in speech quality compared to the
suppression performance, confirming the importance of the en-
hanced features to the refinement decoder. Notably, the removal
of the refinement decoder Dr led to significant performance
degradation compared to other models, highlighting its effec-
tiveness in high-quality speech restoration with various distor-
tion present. On the other hand, while there was minor perfor-
mance degradation in the absence of the suppression decoder
Ds, it still demonstrated its capability to suppress distortions
when it was used solely, without the refinement decoder.

5. Conclusions
In this paper, we proposed an end-to-end speech restoration
model, Heterogeneous Decoders-DEMUCS (HD-DEMUCS),
that utilizes two heterogeneous decoders for two different per-
spectives of restoration: suppression and refinement. HD-
DEMUCS demonstrated powerful suppression performance
through a mask estimation approach of suppression decoder
and the effectiveness of refinement decoder with dilated con-
volution layers. Additionally, we incorporated a fusion block
to combine effectively the outputs of the two decoders by pre-
dicting a learnable weighting value. We evaluated the proposed
model and baselines in the presence of various distortions with
objective measurements, demonstrating the superiority of HD-
DEMUCS. Specifically, we analyzed the contributions of each
module in HD-DEMUCS with ablation studies and qualitative
results and confirmed the intended functionality of each mod-
ule. Further improvements could be achieved using a larger
dataset or by incorporating speech-related features such as pitch
during training.
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