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Abstract
Automatic speech recognition (ASR) models are frequently ex-
posed to data distribution shifts in many real-world scenarios,
leading to erroneous predictions. To tackle this issue, an exist-
ing test-time adaptation (TTA) method has recently been pro-
posed to adapt the pre-trained ASR model on unlabeled test in-
stances without source data. Despite decent performance gain,
this work relies solely on naive greedy decoding and performs
adaptation across timesteps at a frame level, which may not be
optimal given the sequential nature of the model output. Mo-
tivated by this, we propose a novel TTA framework, dubbed
SGEM, for general ASR models. To treat the sequential output,
SGEM first exploits beam search to explore candidate output
logits and selects the most plausible one. Then, it utilizes gen-
eralized entropy minimization and negative sampling as unsu-
pervised objectives to adapt the model. SGEM achieves state-
of-the-art performance for three mainstream ASR models under
various domain shifts.1

Index Terms: automatic speech recognition, test-time adapta-
tion, beam search, entropy minimization, negative sampling

1. Introduction
While deep neural networks have achieved remarkable progress
in a broad range of areas, such as computer vision [1, 2], nat-
ural language processing [3, 4], and speech processing [5, 6],
these models are known to be susceptible to data distribution
shifts [7, 8]. This so-called domain shift problem readily occurs
in recent automatic speech recognition (ASR) models, which
imposes challenges in deploying ASR models to real-world ap-
plications. For example, utterances of unseen speakers/words
not exposed during training or utterances with accidental back-
ground noise can be given at test time.

To tackle this domain shift problem for ASR models, many
prior works have been suggested, including data augmenta-
tion [9], feature alignment [10], domain adversarial learn-
ing [11, 12], and knowledge distillation [13]. These works
mainly mitigate the domain shift problem under the unsuper-
vised domain adaptation (UDA) setting, where the source mod-
els are adapted to unlabeled target domains. However, the UDA
setting has several impractical assumptions in real-world sce-
narios. First, it assumes that the source data is accessible, which
might be unavailable due to privacy/storage issues. Second, a
pile of target data has to be collected in advance. This is also
unrealistic as it requires substantial resources. Even worse, it
restricts the generalization capacity of the model only to the pre-
collected target data, although the target distribution can change
arbitrarily at test time. Meanwhile, several speaker adaptation

1Our code is available at https://github.com/drumpt/SGEM.

methods [14, 15, 16] have demonstrated satisfactory adaptation
performance on variation in speakers during inference. How-
ever, their restricted focus on speaker changes and reliance on
prior knowledge of test-time speakers impose limitations in ef-
fectively addressing arbitrary domain shifts during test time.

Inspired by these limitations, a method called SUTA [17]
was first proposed to address an arbitrary domain shift problem
under a more realistic setting - test-time adaptation (TTA) - for
ASR models as in other domains [18, 19, 20, 21, 22, 23, 24, 25,
26, 27]. Given an off-the-shelf ASR model pre-trained on the
source domain, TTA methods aim to adapt the model on-the-fly
using unlabeled instances from the target domain in test time
without access to source data. Inheriting the ideas of the TTA
approaches in the computer vision domain [19, 21, 22], SUTA
shows decent performance in a single-utterance TTA setting for
the CTC-based ASR model [6].

However, directly adopting this approach to advanced ASR
models [28, 29] could not be optimal as SUTA was developed
with the CTC-based models [30] in mind. This is because, un-
like the CTC-based models, which generate each output token
independently in a greedy manner, advanced ASR models are
designed to work in an autoregressive manner or typically uti-
lize beam search decoding with an external language model dur-
ing the test phase. This indicates that output logits acquired by
greedy decoding may not adequately capture the output distri-
bution, and naively adapting with these logits at a frame level
as in [17] can cause undesirable behavior at the sequential level
for general ASR models.

In this paper, we propose a Sequential-Level Generalized
Entropy Minimization (SGEM) framework towards an effective
TTA for general ASR models. To this end, SGEM first explores
candidate output logits and selects the most plausible one us-
ing beam search to leverage the sequential nature of the output.
Then, SGEM leverages generalized entropy minimization loss
and negative sampling loss as auxiliary unsupervised objectives
to adapt the model at a sequential level. We validate SGEM for
three representative ASR models on various datasets with dif-
ferent distribution shifts, including unseen speakers/words and
severe background noise, and demonstrate that SGEM achieves
state-of-the-art performance in most settings. To the best of our
knowledge, this is the first work suggesting the TTA method for
general ASR models.

2. Proposed Method: SGEM
This section introduces SGEM, an effective TTA framework for
general ASR models. To this end, we describe the test-time
adaptation setup for ASR models in Section 2.1 and illustrate
the core strategies of SGEM from Section 2.2 to Section 2.5.
Figure 1 depicts the overall pipeline of the proposed method.
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Figure 1: The overall pipeline of the SGEM framework. Given a single utterance x in the target domain, we first acquire logits based
on the most plausible beam search output. Then, we utilize generalized entropy minimization and negative sampling objectives with x
itself to adapt the ASR model f(·|θ) pre-trained on the source domain.

2.1. Test-Time Adaptation Setup for ASR Models

We briefly explain general ASR models before formulating test-
time adaptation (TTA). Let f(·|θ) be an ASR model trained
on the labeled source domain Ds = {(xs

i , y
s
i )}i in pairs of

speech and text, which takes a raw waveform x and returns log-
its f(x|θ) ∈ RL×C for each timestep. Here, L is the num-
ber of timesteps, C is the number of vocabulary classes, and
θ is the model parameter. It models the log joint probability
log p(y|x, θ) of a candidate transcript y = (y1, · · · , yL), in an
autoregressive manner as follows:

log p(y|x, θ) := log pAM(y|x, θ) + λLM log pLM(y) + Z

=
L∑

i=1

log pAM(yi|y<i, x, θ) + λLM log pLM(yi|y<i) + Z,

where yi ∈ {1, · · · , C}, pAM(y|x, θ) is the joint probability
given by the model output f(x|θ), pLM(y) is the joint proba-
bility of an autoregressive language model (LM), λLM is a hy-
perparameter to control the effect of the LM, and Z is a normal-
izing constant. LM aims to boost the ASR model to generate
more faithful sentences. ASR decoding strategies approximate
the optimal solution y∗ = argmaxy log p(y|x, θ).

TTA methods for an ASR model f(·|θ) aim to adapt the
model to the unlabeled target speech domain Dt = {xt

i}i with-
out access to Ds. Specifically, we consider a single-utterance
TTA setting where we fine-tune the ASR model f(·|θ) for
each utterance xt

i ∈ Dt to get more precise output logits
log p(y|xt

i, θ) with unsupervised objectives using only xt
i itself.

This single-utterance TTA setting is considerably pragmatic re-
garding low latency without presuming that the test instances
are independent and identically distributed [17, 24, 27].

2.2. Beam Search-Based Logit Acquisition

An existing TTA method for ASR models [17] exploits the
greedy decoding strategy without leveraging the external LM
(i.e., λLM = 0) to get output logits for all timesteps. Also, it
utilizes them with unsupervised objectives such as entropy min-
imization [31] and minimum class confusion [32] as if they are
appropriate logits to adapt the ASR model. However, naively
using greedy decoding is proven defective [33] and can mislead
the model to be adapted on the wrong labels. Furthermore, this
frame-level greedy adaptation might be sub-optimal on the se-

quential output since it only considers the joint probability of a
sequence myopically over timesteps.

To this end, we exploit a novel logit acquisition strategy
based on more systematic beam search decoding. Given a beam
width B, we find the most plausible output sequence ŷ =
(ŷ1, · · · , ŷL), which approximates y∗ using beam search [33].
Note that we do not hold the logits of beam candidates in this
step to reduce memory consumption. Instead, the estimated se-
quence ŷ is passed to the model again to acquire the i-th logit
oi = (oi1, · · · , oiC) ∈ R

C for all i ∈ {1, · · · , L} where
oij = log p(yi = j|ŷ<i, x, θ). Our intuition behind the beam
search-based logit acquisition is that considering the logits ob-
tained from beam search for adaptation naturally aligned with
how ASR models decode sentences, i.e., our approach can tai-
lor the model to adapt toward the actual yet accurate sentences
generated by the ASR models.

2.3. Generalized Entropy Minimization

While entropy minimization achieves decent performance on
domain adaptation tasks [19, 21, 22, 34] by reducing the un-
certainty of predictions, and extracting domain-invariant fea-
tures on the target domain, we can further improve this objective
by adopting its generalized version, Rényi entropy, and search-
ing for more effective hyperparameter. For a discrete random
variable X , which takes values in {1, · · · , C}, Rényi entropy
Hα(X) of order α with α ∈ (0, 1) ∪ (1,∞) is defined as
Hα(X) = 1

1−α
log

(∑C
j=1 P(X = j)α

)
. When α → 1 and

α → ∞, Hα(X) becomes Shannon entropy and cross-entropy
with a pseudo-label argmaxj P(X = j), respectively. For a
single-utterance TTA setting, we hypothesize that there exists
an optimal α ∈ (1,∞) and define the generalized entropy loss
as follows:

LGEM =
1

L

L∑

i=1

1

1− α
log

( C∑

j=1

pαij

)
, (1)

where pij =
exp(oij/T )∑C

j′=1
exp(oij′/T )

and T is a temperature hyper-

parameter for preventing vanishing gradient. As the blank to-
ken dominates all timesteps, we ignore timesteps with the high-
est probability of blank token among all classes to alleviate the
class imbalance problem as in [17].
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Table 1: Comparison of TTA performance, measured as word error rate (%), for three mainstream ASR models across 12 datasets with
various types of domain shifts. The results are obtained using greedy decoding for inference.

Dataset CH TD CV VA AC AA BA CM MU NB SD TP Avg.

CTC-based
model

Unadapted 31.2 13.2 36.9 14.5 28.1 40.9 66.6 49.8 50.4 119.2 19.2 26.2 41.4
SUTA 25.0 12.0 31.4 11.8 17.7 31.3 55.2 39.4 39.7 113.0 15.0 17.8 34.1
SGEM 24.7 12.0 31.1 11.6 17.3 30.7 53.1 38.5 38.6 110.5 14.8 17.5 33.4

Conformer
Unadapted 28.7 15.1 36.8 17.4 18.8 44.8 74.3 45.7 56.0 122.1 20.8 36.9 43.1
SUTA 25.2 13.4 32.4 14.7 14.5 39.8 73.3 38.4 48.7 125.5 16.4 28.8 39.3
SGEM 24.5 13.3 31.6 14.6 14.4 38.5 70.4 38.7 48.5 120.9 16.8 28.9 38.4

Transducer
Unadapted 11.8 7.2 12.9 6.5 14.1 20.4 31.0 29.7 31.3 74.6 12.7 16.2 22.4
SUTA 10.3 6.8 12.1 5.5 12.0 18.5 28.3 26.7 28.7 74.6 11.7 14.7 20.8
SGEM 9.9 6.6 12.0 5.2 11.6 18.0 27.5 26.0 28.0 76.5 11.5 14.3 20.6

2.4. Negative Sampling

We further exploit negative sampling loss, originally adopted
for semi-supervised learning (SSL) in [35]. Negative sampling
loss penalizes the probabilities of low-confident classes, and
Chen et al. [35] have shown that adding it can further boost
the performance of existing SSL algorithms. It can be derived
from the standard cross-entropy loss as follows. Given L la-
beled samples {(xi, yi)}Li=1, the standard cross-entropy loss is
defined as LCE = − 1

L

∑L
i=1

∑C
j=1 1[j=yi] log pij . Note that∑C

j=1 1[j=yi] log pij = log(1−∑
j ̸=yi

pij). Since we do not
know the ground truth label yi for each xi in the unlabeled tar-
get domain, we approximate LCE with the negative sampling
loss LNS defined as follows:

LNS = − 1

L

L∑

i=1

log
(
1−

C∑

j=1

1[p′ij<τ ]pij
)
, (2)

where pij =
exp(oij/T )∑C

j′=1
exp(oij′/T )

, p′ij =
exp(oij)∑C

j′=1
exp(oij′ )

with a

temperature hyperparameter T for avoiding vanishing gradient,
and 1 is an indicator function. j-th class of xi is considered as
a negative class when the probability p′ij is less than a threshold
τ . Without modification, Equation (2) can be interpreted in a
single-utterance TTA setting as penalizing probabilities of neg-
ative classes at every timestep for a sequential output of length
L.

2.5. Overall Framework

Our final unsupervised objective is the weighted sum of the gen-
eralized entropy loss and the negative sampling loss as follows:

L = LGEM + λNSLNS, (3)

where λNS is negative sampling weight for balancing two losses.
For each utterance, we adapt the model for N iterations in an
episodic manner where we newly reset the model to the pre-
trained one to preserve the knowledge from the source domain.

3. Experiments
3.1. Experimental Setup

Source ASR Models To verify the efficacy of SGEM, we
evaluate it on three mainstream ASR architectures: the CTC-
based model [30], Conformer [36], and Transducer [37]. More
specifically, for the CTC-based model, we use wav2vec 2.0 [6]
2 trained on the LibriSpeech dataset [38]. For Conformer,
we exploit Conformer-CTC [36] 3 trained on the LibriSpeech

2https://huggingface.co/facebook/wav2vec2-base-960h
3https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/

stt en conformer ctc small ls

dataset. For Transducer, we adopt Conformer-Transducer [28]
4 trained on a composite NeMO ASRSET dataset, including the
LibriSpeech dataset. We utilize the external 4-gram language
model 5 for the CTC-based model and Conformer.

Datasets We assess the performance of SGEM on mul-
tiple datasets under various domain shift settings. To test
SGEM under unseen speakers/words, we use the test set of
four datasets: CHiME-3 (CH) [39], TED-LIUM 2 (TD) [40],
Common Voice (CV) [41], and Valentini (VA) [42]. In addi-
tion, we validate SGEM under accident background noise by
injecting the following eight types of noises to each utterance of
in-domain LibriSpeech test-other dataset [38]: air conditioner
(AC), airport announcement (AA), babble (BA), copy machine
(CM), munching (MU), neighbors (NB), shutting door (SD),
and typing (TP) with SNR = 10dB. For each type of noise,
we randomly select one noise sample from the MS-SNSD
noise test set [43]. We also evaluate SGEM on L2-Arctic [44],
non-native English speech corpora, to verify SGEM under
extreme pronunciation/accent shifts. Specifically, we randomly
select one speaker for each first language.

Implementation Details Since the TTA setting has no
validation set, we optimize hyperparameters on the CH dataset
for each model and apply them to the other datasets. The
best settings are as follows. For all models, we use AdamW
optimizer [45] and cosine annealing learning rate scheduler
with ηi and ηf for initial and final learning rates, respectively,
and set (N,T, τ) = (10, 2.5, 0.4/C) with vocabulary size
C. We only train feature extractors for the CTC-based
model and encoders for the others. Furthermore, we set
(ηi, ηf , B, λLM, α, λNS) = (4·10−5, 2·10−5, 5, 0.3, 1.5, 1)
for the CTC-based model, (4·10−5, 2·10−5, 5, 0.3, 1.25, 2)
for Conformer, and (4·10−6, 2·10−6, 3, 0, 1.25, 0.5) for
Transducer. All experiments are conducted on Nvidia TITAN
Xp and GeForce RTX 3090. Adaptation takes about 0.771
seconds for a 1-second utterance averaged over three models.

3.2. Main Results

We compare the TTA performance of three mainstream ASR
models, including the CTC-based model, Conformer, and
Transducer, across 12 datasets with various domain shifts. Ta-
ble 1 presents the word error rate (WER) of ASR model out-
puts generated by the greedy search decoding method, follow-
ing the evaluation protocol used in the previous study [17].
Additionally, Table 2 showcases the TTA performance for the
CTC-based models using beam search decoding with external
LM. For both decoding methods, the ASR models with SGEM

4https://catalog.ngc.nvidia.com/orgs/nvidia/teams/nemo/models/
stt en conformer transducer small

5https://huggingface.co/patrickvonplaten/wav2vec2-base-100h-with-lm
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Table 2: Comparison of TTA performance, measured as word error rate (%), for the CTC-based model across 12 datasets with various
domain shifts. The results are obtained using beam search decoding with an external language model for inference.

Dataset CH TD CV VA AC AA BA CM MU NB SD TP Avg.
Unadapted 29.5 12.2 36.9 13.0 26.1 38.6 58.9 48.9 49.0 91.6 17.4 23.7 37.2
SUTA 24.1 11.6 31.5 11.4 16.8 30.3 53.2 38.1 38.6 107.9 14.1 16.9 32.9
SGEM 24.1 11.7 31.1 11.1 16.5 29.8 51.6 37.7 37.7 106.7 14.0 16.9 32.4

consistently enhance the recognition accuracy of target utter-
ances with an average word error rate reduction of 15.6%, ex-
cept for two cases on NB, where the performance without adap-
tation is the best when using beam search decoding. Further-
more, SGEM outperforms SUTA in terms of average WER
across all 12 datasets for each of the three model architectures
(CTC-based model: (greedy) 34.1% → 33.4%, (beam search)
32.9% → 32.4% / Conformer: 39.3% → 38.4% / Trans-
ducer: 20.8% → 20.6%). This indicates the superiority of our
unsupervised objectives as well as the logit acquisition method
for adapting sequential language outputs regardless of the de-
coding strategy.

3.3. Non-Native English Speech Corpora

To show the usability of SGEM at various domain shifts, we fur-
ther analyze SGEM on six different non-native English speech
corpora. The result is summarized in Table 3. As shown in
Table 3, SGEM achieves the best results for all corpora, outper-
forming the baseline. This implies the adaptability of SGEM
under extreme pronunciation/accent shifts, demonstrating its
versatility in practical situations with severe speaker shifts, such
as globally used online ASR systems.

Table 3: Comparison of TTA performance, measured as word
error rate (%), for the CTC-based model on six non-native En-
glish speech corpora.

Setting Unadapted SUTA SGEM
Arabic 32.5 27.1 26.5
Mandarin 28.5 23.3 23.1
Hindi 15.7 12.5 12.3
Korean 23.3 19.7 19.5
Spanish 35.7 29.8 29.3
Vietnamese 18.5 15.7 15.4
Average 25.7 21.4 21.0

3.4. Data Deficient Condition

It is commonly known that TTA methods fail under the data
deficient condition where the number of test instances is lim-
ited [27, 46]. This still holds in the single-utterance TTA setting
for ASR models, where the length of utterance is short, so the
number of output tokens is insufficient. To validate SGEM on
this harsh condition, we split the CH dataset according to utter-
ance length and evaluate SGEM with the CTC-based model on
each split. As shown in Figure 2, SGEM performs best in every
length interval. In addition, it is worth noting that SGEM signif-
icantly outperforms the baseline for extremely short utterances
of less than 2 seconds, showing the superiority of our method
in real-world scenarios where short utterances are prevalent and
negligible latency is required.

3.5. Ablation Study

To validate the core components of SGEM: beam search-based
logit acquisition (BS, Section 2.2), generalized entropy mini-
mization (GEM, Section 2.3), and negative sampling (NS, Sec-
tion 2.4), we conduct an ablation study for three mainstream
ASR models on CH dataset. As shown in Table 4, both general-

Figure 2: Comparison of TTA performance, measured as rel-
ative word error rate reduction (%), on different utterance
lengths of CH dataset for the CTC-based model.

ized entropy minimization and negative sampling alone achieve
remarkable performance gains for every model, indicating the
efficacy of each component. Meanwhile, substituting greedy
search for beam search even with small beam width (for all
models) and without external LM (for Transducer) consistently
boosts the performance in all cases, showing the effectiveness
of beam search-based logit acquisition and implying that addi-
tional performance improvement can be expected using larger
beam sizes or language model if resources are allowed.

Table 4: Ablation study of SGEM.

BS GEM NS CTC Conformer Transducer
✗ ✗ ✗ 31.2 28.7 11.8
✗ ✓ ✗ 24.9 24.7 10.0
✗ ✗ ✓ 25.2 25.0 10.1
✗ ✓ ✓ 24.8 24.7 10.0
✓ ✗ ✓ 24.8 24.7 10.1
✓ ✓ ✓ 24.7 24.5 9.9

4. Conclusion
We have suggested SGEM, an effective single-utterance TTA
framework for general ASR models. SGEM exploits beam
search-based logit acquisition and utilizes generalized entropy
minimization and negative sampling objectives to adapt the
model at a sequential level. SGEM has achieved state-of-the-
art performance for the three mainstream ASR models across
12 datasets with various domain shifts, including utterances of
unseen speakers/words during training and utterances with se-
vere background noise. We have also verified SGEM under
harsh conditions, such as non-native English utterances with
severe pronunciation/accent shifts and the data deficient con-
dition, and the efficacy of each component of SGEM through
an ablation study. SGEM sheds light on the careful design of
speech-specific components when devising test-time adaptation
methods for ASR models.
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