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Abstract
Deep learning models employ various regularization tech-

niques to prevent overfitting and enhance generalization. In par-
ticular, an auxiliary loss, as proposed for connectionist temporal
classification (CTC) models, demonstrated the potential for in-
termediate prediction to be useful by enabling sub-models to
recognize speech accurately. We propose a new method called
Intra-ensemble, which combines these accurate intermediate
outputs into a single output for both training and inference, con-
sidering the importance of the intermediate layer using learn-
able parameters. Our approach is applicable to CTC models,
attention-based encoder-decoder models, and transducer struc-
tures and demonstrated performance improvements of 13.5%,
3.0%, and 4.1% respectively, in the LibriSpeech evaluation.
Furthermore, through various analytical experiments, we found
that the sub-models contributed significantly to performance
improvement.
Index Terms: speech recognition, ensemble

1. Introduction
End-to-end (E2E) automatic speech recognition (ASR) systems
have become the mainstream ASR scientific research topic, ow-
ing to the remarkable progress in deep neural networks [1, 2].
There are three fundamental categories of E2E models: con-
nectionist temporal classification (CTC) [3] models [4–11],
attention-based encoder-decoder (AED) models [12–14], and
transducers [15–17]. The CTC model comprises an encoder that
maps speech to acoustic features and a linear layer that subse-
quently maps these features to the corresponding label proba-
bility at each time step. The AED model comprises an encoder
that encodes the acoustic features and a decoder that generates
sentences in an autoregressive manner. The transducer model
comprises an encoder, prediction network, and joint network.
The encoder maps input speech features to a sequence of hid-
den representations. The prediction network generates hidden
representations using the embedding vector of the preceding to-
ken. The joint network amalgamates the outputs of the encoder
and prediction network to generate the next potential token. The
encoder, which is shared across all three models, usually re-
lies on the transformer structure [18,19] and, in some instances,
includes convolution modules to better leverage the local con-
text [20].

In addition to the architectures, deep learning models em-
ploy various regularization techniques during training to pre-
vent overfitting and enhance generalization. With unlimited
computation, the optimal regularization approach would be to
average the predictions of all possible parameter settings [21].
Nonetheless, this ensemble method has the drawbacks of requir-
ing multiple training and increasing the decoding time. Dropout

[22] is a technique that trains models by randomly deactivating
nodes among connected nodes, and LayerDrop [23] extended
this approach to the layers. This can be viewed as training an
ensemble of sub-models. Another approach involves adding
an auxiliary loss. InterCTC [10] achieved a regularization ef-
fect by including the CTC loss in the intermediate layers of the
CTC model. Additionally, [5] presented guidance by hierar-
chically dividing token units of intermediate loss, while Self-
conditioned CTC [11] improved the performance by assuming
that sub-models can already recognize speech and used it as
a condition. The addition of auxiliary losses trains the sub-
models directly, enabling them to recognize speech; however,
their output is not utilized during testing.

Recent studies indicated that using intermediate prediction
trained with intermediate loss can accurately recognize speech.
In [24], the intermediate prediction was employed to enhance
the performance through iterative decoding. [25] achieved fast
decoding by pruning intermediate layers of the trained model.
However, they were unable to avoid a decrease in performance
or an increase in decoding time due to repeated decoding or
pruning processes.

To address this issue, we propose a simple yet effective
training method called Intra-ensemble. Intra-ensemble involves
mixing intermediate outputs without increasing the decoding
time or causing performance degradation. Intra-ensemble com-
bines the sub-model outputs by performing a weighted sum us-
ing learnable parameters. This weighted sum feature, called
contextualized representation, is used not only during train time
but also during test time. Unlike previous studies that ap-
plied their methods to only one ASR structure; CTC models,
we demonstrated that Intra-ensemble can enhance the perfor-
mance for all three structures - CTC models, AED, and trans-
ducer. For the CTC models, the Intra-ensemble demonstrated
an average improvement of 9.3% for the TEDLIUM2 dataset
and 13.5% for the LibriSpeech dataset. Furthermore, when ap-
plied to the AED models, it exhibited an average performance
improvement of 3.0% for the LibriSpeech dataset. When ap-
plied to the conformer-transducer models, it exhibited an av-
erage performance improvement of 4.1%. Moreover, through
several analytical experiments described in Section 4, we con-
firmed that the sub-models significantly contributed to perfor-
mance improvement.

2. Proposed method
2.1. Intermediate CTC

Intermediate CTC (InterCTC) is an auxiliary loss designed for
CTC models for regularization [10]. Let us consider a multi-
layered transformer-based architecture that employs a CTC loss
function. In this structure, the encoder comprises L layers for
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Figure 1: Overview diagram of the proposed method. The con-
textualized representation is generated by the weighted sum of
intermediate layer outputs using a learnable parameter α. The
learnable parameter α is trained alongside the model during
training and fixed at its learned value during test time.

a given input X0 ∈ RT×D of length T and dimension D. The
CTC then calculates the probability of the target sequence y by
considering all the possible alignments for the label and input
length T . The likelihood of the target sequence y and encoder
output XL is defined as:

ZL = Softmax(LinearD→|V ′ |(XL)) (1)

PCTC(y|ZL) =
∑

π∈β−1(y)

P (π|ZL) (2)

where β−1(y) denotes the set of alignments π of length T
which are compatible with the target sequence y including the
special blank token and |V ′ | denotes the output token vocab-
ulary size, including the blank token. Softmax(·) denotes
a softmax function, and Linear(·) denotes a linear layer that
maps a D-dimensional vector into a |V ′ |-dimensional vector.
During training, we minimized the negative log-likelihood in-
duced by the CTC using PCTC(y|ZL) in Eq. (2):

LCTC = −logPCTC(y|ZL) (3)

The intermediate loss is attached to the intermediate layer of the
encoder at the layer indices set K and is defined as follows:

LInterCTC =
1

|K|
∑

k∈K
−logPCTC(y|Zk) (4)

where k denotes a layer index and Zk denotes kth intermediate
prediction. Note that the linear layer used to obtain Zk is shared
with the one used to obtain ZL. Subsequently, the training ob-
jective is defined by combining Eqs. (3) and (4):

L = (1− w)LCTC + wLInterCTC (5)

with the hyperparameter w. Note that intermediate predictions
are only used during training and not at test time.

2.2. Self-conditioned CTC

InterCTC introduced an auxiliary loss from the intermediate
layers of the encoder. On the other hand, the Self-conditioned
CTC (SelfCond) further utilizes the intermediate predictions as

a condition for the next encoder input:

Xcond
l =

{
Xl + Linear|V ′ |→D(Zl) (l ∈ K)

Xl (l /∈ K)
(6)

where Linear|V ′ |→D(·) maps a |V ′ |-dimensional vector into
a D-dimensional vector for each element in the input sequence
and K denotes the set of intermediate layer indices. Note that
this linear layer is shared among the |K| intermediate layers.
During training, SelfCond utilizes an additional loss, the same
as InterCTC in Eq. (5). The intermediate prediction is utilized
to condition the next layer. However, Similar to InterCTC, only
the output of the last layer is used for the final prediction.

2.3. Intra-ensemble

To directly utilize the predictions of the intermediate layer, we
propose Intra-ensemble. Our primary concerns behind Intra-
ensemble are determining which intermediate layers to use and
how to combine the intermediate layer outputs into a single rep-
resentation. The intermediate layer’s output can be viewed as
the output of a sub-model, which should be sufficiently accu-
rate to recognize speech. We chose the same choice for the in-
termediate layer as SelfCond because they hypothesized that the
intermediate prediction is sufficient to recognize speech on their
intermediate layer set K. The most straightforward approach for
combining intermediate outputs is to average the outputs. How-
ever, averaging fails to capture the importance of each layer.
Thus, we adopt the learnable parameter α to address this is-
sue. The α contains |K| parameters that correspond to the |K|
intermediate layers and is trained alongside the model. We uti-
lize the sigmoid function for alpha in order to introduce non-
linearity. We provide a detailed explanation of the importance
of α in Section 4.2.3. The representation obtained through the
selected intermediate outputs and the learnable parameter α is
as follows:

Xcontext = LayerNorm(
∑

k∈K
σ(αk)Xk) (7)

where σ(·) denotes a sigmoid function. As described in Figure.
1, this representation is referred to as contextualized represen-
tation, which we employ for both training and inference. As the
contextualized representation simply involves the weighted sum
of the intermediate layer outputs that naturally arises during the
computation of the complete model, the training time is slightly
increased, without any increase the in decoding time.

2.4. Related work

In data2vec [27, 28] utilized intermediate layer outputs, trained
the model using the contextualized representation as a self-
target. However, the contextualized representation is obtained
as the mean of all layers and was used for self-supervised learn-
ing manner, not for the ASR task. Gtrans [29] proposed the use
of intermediate layer outputs to train deep networks in a seq2seq
structure for machine translation tasks. The Intra-ensemble
method in contrast, works not only for AED structure but also
for CTC and Transducer models.

Our work can also be viewed as an extension of studies
that enhance the performance of the encoder. [6–8] introduced
an additional network to enhance the performance of the en-
coder for CTC. [6, 7] improved the performance of the encoder
by masking its output and using an additional decoder to pre-
dict the masked portion. [8] enhanced performance by utilizing
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Table 1: WER on the TEDLIUM2, LibriSpeech 100h/960h datasets for CTC models. Above the dashed line, the results for TEDLIUM2
and LibriSpeech 100h were obtained from [26], while the results for LibriSpeech 960h were derived from [5]. In all experiments,
greedy decoding was used during the decoding process. Highlighted in bolds indicate the best performance achieved.

Method TEDLIUM2 LibriSpeech-100h LibriSpeech-960h
dev test RERR dev-clean dev-other test-clean test-other RERR dev-clean dev-other test-clean test-other RERR

Previous work
CTC 8.9 8.6 - 7.4 20.5 7.8 20.8 - 3.8 9.8 3.9 9.9 -
InterCTC 8.5 8.3 4.0 % 6.9 19.7 7.1 20.2 4.6 % 3.1 8.5 3.3 8.4 15.1 %
SelfCond 8.7 8.0 4.6 % 6.6 19.4 6.9 19.7 6.9 % 2.9 7.9 3.1 7.9 20.7 %
Proposed work
CTC 9.4 8.7 - 7.6 20.6 7.7 20.8 - 3.6 9.1 3.8 9.1 -

+ Intra-ensemble 9.1 8.3 3.4 % 7.2 19.6 7.3 19.7 5.2 % 3.3 8.7 3.5 8.6 5.2 %
InterCTC 8.7 8.3 6.1 % 7.0 19.2 7.2 19.5 6.9 % 3.2 8.7 3.3 8.5 7.1 %

+ Intra-ensemble 8.4 8.0 9.1 % 6.6 19.1 6.8 19.3 8.6 % 3.2 8.2 3.3 8.2 10.4 %
SelfCond 8.8 8.1 6.7 % 6.9 19.0 6.9 19.6 7.7 % 3.2 8.2 3.3 8.2 10.2 %

+ Intra-ensemble 8.5 7.9 9.3 % 6.6 18.8 6.7 18.9 10.1 % 3.1 7.9 3.2 7.9 13.5 %

Table 2: WER on full LibriSpeech for AED models. CTC and
1-best decoding were used during the decoding process.

Method LibriSpeech-960h
dev-clean dev-other test-clean test-other RERR

CTC model 3.6 9.1 3.8 9.1 -
CTC-decoding
18 enc - 6 dec 3.2 7.6 3.2 8.0 -

+ Intra-ensemble 2.9 7.5 3.1 7.5 5.2 %
1-best
18 enc - 6 dec 2.8 6.7 3.1 6.8 -

+ Intra-ensemble 2.6 6.4 3.1 6.7 3.0 %

the prediction error of the decoder as a loss to train intermedi-
ate layers. However, they require additional networks, and the
training time is also increased. Furthermore, these studies pro-
posed various methodologies to improve the performance of the
encoder, but at test time, only the output of the final layer was
used.

3. Results
We evaluated the performance of Intra-ensemble on the two cor-
pora: TEDLIUM2 [30] (English, 207 hours) and LibriSpeech
[31] (English, 960 hours). We utilized icefall [32] for all ex-
periments and utilized 80-dimensional log-mel features with 3-
dimensional pitch features as inputs, and SpecAugment [33]
for data augmentation, in addition to applying speed perturba-
tion [34]. We tokenized label sentences as subwords with sen-
tencepeice [35]. For TEDLIUM2, the model was trained for 60
epochs. For LibriSpeech 100h subset, the model was trained for
70 epochs and 40 epochs for the full LibriSpeech dataset. After
training, the model parameter was obtained by averaging mod-
els from the last 10 epochs. All experiments were performed on
4 NVIDIA A100 40GB GPUs.

3.1. CTC models

We first investigated our approach for CTC models. For the
hyperparameters of the experiments, we mainly followed the
icefall recipes. All models comprised an 18-layer conformer
encoder with 4 attention heads and 256 hidden dimensions,
and 15 convolution kernel sizes. For InterCTC, we selected
the 9th layer as the intermediate layer, using a value of 0.3
for w as described in [10]. For SelfCond, we utilized K =
{3, 6, 9, 12, 15}, and a value of 0.5 for w, as mentioned in [11].
For our method, as we calculated the loss for contextualized
representation instead of the output of the final layer, we utilized
K = {3, 6, 9, 12, 15, 18}, including the final layer when apply-
ing an intermediate loss. The results of the CTC models are pre-
sented in Table 1. For TEDLIUM2, when our proposed method
was applied to InterCTC and SelfCond, it demonstrated an aver-
age performance improvement of 9.1% and 9.3%, respectively.
Even when applied to a standard CTC model, which does not di-
rectly impose a loss on intermediate layers, it still demonstrated

Table 3: WER on full LibriSpeech for Conformer-T models. No
loss other than RNN-T was used. Experiments were conducted
for each of the different model sizes.

Method # of params LibriSpeech-960h
dev-clean dev-other test-clean test-other RERR

Conformer-T
30.5 M 2.8 7.2 3.0 7.1 -
78.6 M 2.5 6.4 2.7 6.4 -

116.5 M 2.3 5.8 2.5 5.8 -

Intra-ensemble
30.5 M 2.6 6.9 2.8 6.9 4.1 %
78.6 M 2.4 6.2 2.4 6.0 3.5 %

116.5 M 2.2 5.6 2.4 5.6 3.1 %

Table 4: A WER comparison based on the number of epochs on
LibriSpeech test sets. The model used in this experiment was
trained on LibriSpeech 960h.

Epoch 10 epoch 20 epoch 30 epoch 40 epoch
WER(%) 5.5 4.2 3.8 3.6

10 epoch 20 epoch
30 epoch 40 epoch

𝜶𝟏	 𝜶𝟐	 𝜶𝟑	 𝜶𝟒	 𝜶𝟓	 𝜶𝟔	

0.7

0.6

0.5

0.4

0.3

0.2

Figure 2: Visualization of learnable parameter alpha on the dif-
ferent number of epochs.

an average performance improvement of 3.4%. For the Lib-
riSpeech 100h subset, our method demonstrated a 10.1% perfor-
mance improvement, exhibiting a similar trend to TEDLIUM2.
For LibriSpeech 960h, our method achieved an average perfor-
mance improvement of 13.5% compared to the standard CTC
model. Note that for LibriSpeech 960h, our method showed a
lower average performance improvement compared to previous
studies, likely due to the superior performance of the standard
CTC model.

3.2. AED

We then explored our method for AED models. All models
comprised a 6-layer transformer decoder with 4 attention heads
and 256 hidden dimensions and utilized the same encoder ar-
chitecture as the CTC models. Table 2 presents the results of
our method for LibriSpeech 960h. Since AED models employ
CTC loss for the encoder, we first performed CTC−decoding
using only the encoder to verify the performance of the encoder
itself. Similar to the CTC models, we achieved an average
performance improvement of 5.2% when applying our method.
Additionally, even though the encoder has same parameters as
the CTC models, we confirmed a performance improvement of
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Figure 3: Visualization of learnable parameter α on different
ASR architecture.
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Figure 4: A WER comparison of two different methods for gen-
erating contextualized representations on LibriSpeech dev/test
sets.

20.9% compared with the existing CTC model when using the
decoder for training. When applying our method to 1−best de-
coding using the decoder, we achieved a performance improve-
ment of 3.0%. Through this experiment, we confirmed that the
proposed method can improve the performance of AED models.

3.3. Transducer

We investigated our approach for the conformer-transducer
(conformer-T) which uses a conformer as the encoder. For
conformer-T, we did not use any loss other than the RNN-T
loss to investigate the effects of our approach. We utilized the
pruned RNN-T loss [36] owing to its fast and memory-efficient
training. In addition, in order to demonstrate that our method
can be applied to other model sizes, we conducted experiments
on three different model. As described in Table 3, the model
with 30.5 M parameters utilized the same CTC model for the
encoder, the prediction network with 512 hidden units, and the
joint network with a dimension of 512. The Intra-ensemble
demonstrated an average performance improvement of 4.5%
compared to the baseline. For the model with an encoder con-
taining 512 hidden units and 12 layers (denotes 78.6 M param-
eters), we chose K = {3, 6, 9, 12}. Our method exhibited an
average performance improvement of 3.5%. The model with
an encoder containing 512 hidden units and 18 layers (denotes
116.5 M parameters), it exhibited an average performance im-
provement of 3.1%, demonstrating that the Intra-ensemble can
improve the performance of models with a large number of pa-
rameters.

4. Analysis
4.1. Importance of sub-models

In Table 4 and Figure 2, we visualized the performance and
α values by epoch. We trained the standard CTC model with
Intra-ensemble on the LibriSpeech 960h dataset and evaluated
it on the test-clean subset. We utilized K = {3, 6, 9, 12, 15, 18}
to obtain intermediate outputs. As α passes through the sig-
moid function, we visualized σ(α). Since σ(α) serves as the
weight for intermediate outputs, it can also be seen as indicating
the importance of each layer. In Figure 2, we can observe that
the weight for the final layer decreases, and the weight for sub-
models increases as training progresses, resulting in improved
performance. Therefore, the output of sub-models played a sig-
nificant role in improving performance.

Table 5: A WER comparison based on the number of intermedi-
ate layers.

# of α LibriSpeech-100h
dev-clean dev-other test-clean test-other RERR

baseline 7.6 20.6 7.7 20.8 -
2 7.4 19.9 7.5 20.4 2.6 %
3 7.3 19.7 7.5 20.4 3.2 %
6 7.2 19.6 7.3 19.7 5.2 %
9 7.3 19.9 7.9 20.0 3.6 %
18 7.6 20.6 7.8 21.0 -0.2 %

4.2. α visualization

In Figure 3, we visualized α for different ASR architectures
when Intra-ensemble is applied. All encoders have 18 layers
and 256 hidden units and we utilized the standard models with
our method added. As with Figure 2, we visualized α passed
through the sigmoid function. From Figure 3, we can observe
that although the weight for the final layer is relatively high, the
weight for sub-models is not insignificant, indicating that the
output of all sub-models is appropriately utilized.

4.3. Ablation study: Importance of learnable parameter α

To investigate the effect of the learnable parameter α, we per-
formed Intra-ensemble without α. Since there is no learnable
parameter α, we averaged the intermediate outputs to obtain
the contextualized representation. We added the Intra-ensemble
to SelfCond and trained on LibriSpeech 100h subset. As shown
in Figure 4, since the intermediate layers of SelfCond recognize
speech well, we achieved performance improvement compared
to the baseline simply by averaging the intermediate outputs.
However, since the average of the intermediate outputs does not
consider the weight of each layer during training, adding α re-
sulted in a more significant performance improvement.

4.4. Study on intermediate layer selection

We evaluated whether the intermediate output we selected was
appropriate by investigating performance based on sub-model
size. To do this, we trained on Librispeech 100h with Intra-
ensemble applied to a standard CTC model containing 18 lay-
ers and 256 hidden units. We compared results by ensembling
intermediate outputs for all factors of the encoder layer count.
As shown in Table 5, the performance was improved compared
to the baseline if the sub-model is large enough to achieve ac-
curate recognition. However, if the size of the sub-model is too
large, the performance improvement is limited due to insuffi-
cient ensembling. According to the experimental results, the
appropriate size for the sub-model was found to be three layers.

5. Conclusions
We proposed the Intra-ensemble that generates contextual-
ized representation using learnable parameter α and uses it
for training and inference, improving performance without
increasing decoding time. Our algorithm is easy to implement
and can be applied to CTC, AED, and transducer structures. In
addition, we experimentally demonstrated that it can be applied
orthogonally to previous research and can further improve
performance. Our algorithm can also be applied to other tasks
that use transformer which we leave as the future work.
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