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Abstract
Recognizing emotions in speech is essential for improving
human-computer interactions, which require understanding and
responding to the users’ emotional states. Integrating multiple
modalities, such as speech and text, enhances the performance
of speech emotion recognition systems by providing a varied
source of emotional information. In this context, we propose
a model that enhances cross-modal transformer fusion by ap-
plying focus attention mechanisms to align and combine the
salient features of two different modalities, namely, speech and
text. The analysis of the disentanglement of the emotional rep-
resentation various multiple embedding spaces using deep met-
ric learning confirmed that our method shows enhanced emo-
tion recognition performance. Furthermore, the proposed ap-
proach was evaluated on the IEMOCAP dataset. Experimental
results demonstrated that our model achieves the best perfor-
mance among other relevant multimodal speech emotion recog-
nition systems.
Index Terms: speech emotion recognition, multimodal
emotion recognition, multimodal sentiment analysis, focus-
attention mechanism, metric learning

1. Introduction
Emotions are an essential aspect of human communication. Ac-
curate emotion recognition is critical for effective communica-
tion. Voice-based human-machine interactions are becoming
increasingly common and, with the advent of popularized chat-
bots and large-scale language models, the importance of speech
emotion recognition (SER) based on various modalities is in-
creasing. Emotions play a crucial role in how humans interact
with computers and technology. The ability to detect emotions
accurately can improve the user experience, enhancing the us-
ability of computer systems [1]. For example, SER can be used
by mental health professionals to track and monitor the emo-
tional state of patients, particularly those suffering from depres-
sion or anxiety for which emotional regulation is crucial for suc-
cessful treatment [2]. Additionally, using SER a virtual assistant
can detect emotions from the user’s voice and offer more appro-
priate help or guidance to resolve the issue. However, despite
significant progress in this field, emotion recognition remains a
challenging task because emotions are complex, subjective, and
their expression differs significantly among individuals.

The utilization of multiple modalities, such as textual,
acoustic, and visual, facilitates the inference of human emo-
tions or sentiments, as each modality captures different facets of
human emotional expression. Consequently, effectively fusing
multimodal information is crucial for improving the accuracy
and comprehensiveness of predictions by leveraging the com-
plementary nature of diverse modalities [3, 4, 5]. Incorporating

text information is also essential, as speech containing semantic
information is inherently multimodal and the text modality can
provide the necessary contextual information for multimodal
emotion recognition. Recent studies [6, 7, 8, 9, 10, 11, 12, 13]
have demonstrated that leveraging multimodal features is more
effective than relying on a single modality. Yoon et al. [6] use
multimodal dual recurrent encoder networks to integrate infor-
mation from both audio and text. In another study [7] Yoon et
al. propose a multi-hop attention model to identify the relevant
segments of textual data that correspond to the audio signal. Gu
et al. [8] proposed a dyadic fusion network that primarily relied
on attention mechanisms to extract contextual features and fuse
the audio and textual information.

In other words, in situations where two modalities inter-
act sequentially and convey emotion information, it is crucial
to construct models that can accurately and efficiently perform
both fusion and alignment. This requires explicitly modeling
the interactions between the modalities and taking into account
the dynamics within each modality. For instance, the occur-
rence of a negative word at the middle of an utterance may
cause the preceding speech to become louder. By capturing
important area in modality these inter-modal interactions, the
model can better analyze multimodal sequential data. In [14],
Chen et al. propose the key-sparse transformer that assigns at-
tention weight only to emotion-related features when aligning
two modalities. However, humans instinctively identify the im-
portant segment in each modality when perceiving emotions. To
this end, we proposed a novel crossmodal transformer architec-
ture that incorporates an focus-attention (FA) mechanism. The
FA mechanism was employed in the document summary task
detect salient information using focal bias [15]. In this work,
FA detects the dominant segment for SER in each modality to
achieve accurate and efficient alignment between speech and
text modalities.

Meanwhile, self-supervised learning (SSL) using pre-
trained models has demonstrated remarkable performance in
various research fields and tasks [16], including natural lan-
guage processing (NLP) [17, 18] and automatic speech recogni-
tion (ASR) [19]. Existing studies typically apply various meth-
ods for multimodal fusion and use transfer-learning approaches
based on a SSL model [9, 20, 14]. Yang et al. [9] fine-tune the
textual/acoustic pre-trained SSL models on sentiment analysis
and emotion recognition task before bi-modal model. Zhao et
al. [20] proposes a multi-level fusion framework that combines
the SSL model embeddings to address the issue of data sparsity
in multimodal emotion recognition. Although SSL models are
widely used knowledge transfer models trained on large-scale
datasets, they are designed to preserve the maximum informa-
tion content of the input, resulting in feature representations that
may include non-emotional information. In this context, we ar-
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Figure 1: Architecture of the proposed method, including (a) the modality-embedding network, (b) modality fusion module, and (c)
joint loss with the metric loss.

gue that the disentanglement of the emotion embedding space
can play a crucial role in classifying emotions using deep metric
learning (DML).

2. Proposed Framework
The proposed framework depicted in Figure 1 consists of three
main parts. The modality-embedding network is used to learn
acoustic and language features of the input. The modality fusion
module includes a crossmodal transformer [3] enhanced with a
FA mechanism for learning align of two-modality. The joint
loss uses a combination of metric and cross-entropy loss for
back-propagation during training. Further elaboration of pro-
cess will be provided in the subsequent subsections.

2.1. Modality-embedding Network

2.1.1. Text Embedding Network

RoBERTa [18] is a pre-trained language model optimized for
a variety of natural language processing tasks. It is based on
the same transformer-based architecture as BERT [21], but with
several modifications to improve its performance. It is trained
on a larger and more diverse corpus of text data, use a larger
batch size during training, and do not use BERT’s next sentence
prediction object during pre-training. In our work, the text tran-
script of speech is tokenized using the GPT-2 tokenizer [22] and
send to the pre-trained RoBERTa models. The text embedding
outputs have the dimension of 1024 and maximum sequence
length of 512.

2.1.2. Acoustic Wav2vec 2.0 Feature Representation

In another input pipeline, simultaneously, the model receives
the speech signal, while the text script is fed into the sys-
tem. However, relying solely on the wav2vec 2.0 feature is
not enough to accurately capture all the prosodic information

necessary for recognizing emotions in speech [23]. Therefore,
inspired by [24] that utilized different encoders to incorporate
multi-level acoustic information in the SER system, we intro-
duce a new structure that combines acoustic information with
wav2vec 2.0 features. As illustrated Figure 1(a), after the raw
speech signal is pre-processed using windowing, two types of
acoustic information features - the spectrogram and MFCC - are
separately fed into their respective feature encoder networks,
which consist of CNN and BiLSTM encoders. The extracted
MFCC and spectrogram features from each encoder are con-
catenated. Then, they are combined with the wav2vec 2.0 em-
bedding using guided-attention manner [25] to obtain the final
speech embedding.

2.2. Crossmodal Transformer with FA Mechanism

Inspired by crossmodal transformer networks [3] developed for
tri-modal emotion recognition, we apply the same concept to
our bi-modal tasks. We employ a crossmodal transformer block
for the bi-modal fusion network. This transforms latent infor-
mation from one modality to another by iteratively enhancing
the features of one modality using the features of the other, and
vice versa, through a multi-head attention mechanism. The FA
is an attention mechanism that enables neural network models
to selectively attend to the most important parts of an input se-
quence by employing a Gaussian distribution-based focal bias
[15]. In our study, the FA mechanism at the crossmodal trans-
former block detects the salient information in another modal-
ity during encoding. For example, when the crossmodal trans-
former block provides a latent adaptation from text (L) modal-
ity to speech (A) modality (denote L→A), it helps to focus on
which words (speech frame; the opposite case A→L) are im-
portant for emotion classification. This mechanism models a
focal bias by adding a regularization term determined by the
center position and coverage scope to the attention score.

As shown in Figure 1(b), the input to the modality fusion
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module consists of the embedding of each modality that were
obtained in the previous subsection. We denote the speech and
text embedding as XA = {xA

i }i=1,...,TA ∈ RTA×dA and
XL = {xL

i }i=1,...,TL ∈ RTL×dL , respectively. In the pro-
cess of computation, three matrices query QA ∈ RTA×dk , key
KL ∈ RTL×dk , and value VL ∈ RTA×dv are obtained firstly
by the linear projection. To obtain the focal bias, at the i-th
sequence step, the center position scalar µi ∈ R and coverage
scope scalar σi ∈ R are calculated using two linear projection
processes:

µi = UT
c tanh(WpKi +WgG), (1)

σi = UT
d tanh(WpKi +WgG), (2)

where Wp ∈ Rdk×dk and Wp ∈ Rdk×dk are two learnable
shared weights, and Uc ∈ Rdk and Ud ∈ Rdk are two differ-
ent linear projection weight vectors. TL is the length of one
modality. G = 1

TL
ΣTL

i=1Ki is the mean vector to provide com-
plementary information. Moreover, we regulate the value of µi

and σi to closed interval [0, TL],

µ̃i = TL ∗ sigmoid(µi), (3)

σ̃i = TL ∗ sigmoid(σi). (4)

From the definition of Gaussian distribution, the focal bias
for the i-th step fi,j ∈ RTL×TA is obtained with µ̃i and σ̃i as
follows:

fi,j = − (Pj − µ̃i)
2

(σ̃i)2/2
, (5)

where i∈{1, 2, ..., TL}, j∈{1, 2, ..., TA}, Pj is the absolute
position of speech embedding vector xA

j in speech modality.
Eventually, this focal bias is added to the crossmodal attention
(L→A) weight before softmax function.

Attention(QA,KT , VT ) = softmax

(
QAK⊤

L√
dk

⊕ f⊤
)
VL

= softmax

(
ZAWQA

W⊤
KL

Z⊤
L√

dk
⊕ f⊤

)
ZLWVL

Z{A,L} = Conv1D(X{A,L}) + PE(T{A,L}),
(6)

where Z{A,L} is the position-aware feature, PE is positional
embedding, and ⊕ denotes element-wise summation.

2.3. Joint Loss

In our experiment, The triplet loss is used as the metric loss. The
triplet loss function is built to optimize the embedding space
by minimizing the distance between an anchor and a positive
sample (i.e., with the same emotion label as that of the an-
chor), while maximizing the distance between the same anchor
and a negative sample (i.e., different emotion label). Thus, our
method uses the dissimilarities between the samples to enhance
feature discrimination. The embedding vector of input x, which
is the output of the last FC layer is represented as F(x) ∈ Rd.
Subsequently, the goal of the training process is to minimize
the dissimilarity between an anchor utterance xa

i and all posi-
tive utterances xp

i , while maximizing the dissimilarity between
xa
i and any negative utterance xn

i . The final embedding space
is defined by the following equations:

∥F(xa
i )−F(xp

i )∥22 +M < ∥F(xa
i )−F(xn

i )∥22,

∀(F(xa
i ), F(xp

i ), F(xn
i )) ∈ Γ,

(7)

where M denotes the margin which is enforced between pos-
itive and negative pairs and Γ is the set of all possible triplets
(F(xa

i ),F(xp
i ),F(xn

i )) in the training set with cardinality N .
The metric loss to be minimized is defined as follows:

Dpos = ∥F(xa
i )−F(xp

i )∥22,

Dneg = ∥F(xa
i )−F(xn

i )∥22,

Lmetric = 1
N

∑N
i∈Γ [Dpos −Dneg +M].

(8)

During model training, both triplet and cross-entropy losses
are weighted using the coefficients α and β, respectively. The
joint loss L is calculated as follows:

L = αLmetric + βLce, (9)

where Lce is the cross-entropy loss, which is defined as follows:

Lce = −
K∑

k=1

ŷk log(yk), (10)

where y denotes the softmax output and ŷ ∈ {0, 1}K is a one-
of-K label vector.

3. Experiments and Evaluation Results
3.1. Dataset

The performance of our model is evaluated using the IEMO-
CAP dataset [26], which is designed to replicate natural dyadic
interactions between actors based on theatrical theory. The
IEMOCAP dataset comprises five sessions, with each session
featuring utterances from two speakers (one male and one fe-
male), resulting in ten unique speakers. We apply categori-
cal evaluations with majority agreement and considered only
four emotional categories: happy, sad, angry, and neutral - to
compare the performance of our model with that of previous
researches using the same categories [6, 14, 13]. To ensure
a consistent comparison with the results of previous studies
[6, 14, 13], we combine the excitement dataset with the happi-
ness dataset. Our final dataset include 5,531 utterances (1,636
happy, 1,084 sad, 1,103 angry, and 1,708 neutral).

3.2. Experimental Setup

In our study, we use two SSL models to embed each modal-
ity, specifically, the wav2vec 2.0 and RoBERTa models. The
pre-trained ”wav2vec2-base” model 1 and RoBERTa2 are avail-
able online. The MFCC is a 40-dimensional feature structure
including human auditory characteristics based on HTK-style
Mel frequencies extracted from raw speech segments using the
librosa library [27]. To obtain the spectrogram, we applied a
series of 40 ms Hamming windows with a hop length of 10 ms
and treated each windowed block as a frame. The SER system
is implemented using PyTorch. We use Adam as the optimizer,
with a learning rate of 1e − 5 and a training batch size of 32.

1https://huggingface.co/facebook/wav2vec2-base
2https://github.com/facebookresearch/fairseq

2675



Table 1: Results of the ablation study for the individual compo-
nents of our framework on the IEMOCAP dataset.

Model Method WA UA
A Full model 0.774 0.777
B Full model without FA mechanism 0.762 0.755
C Full model without Metric Loss 0.752 0.730

Table 2: Impact on performance of various weights for the met-
ric and CE loss evaluated using WA and UA. α and β are the
weights of the metric and cross-entropy loss, respectively.

Weight Metric
Loss α β WA UA
CE Loss 0 1 0.752 0.730
Joint Loss 0.5 1 0.771 0.763

1 0.5 0.764 0.756
1 1 0.761 0.762

A dropout with p = 0.25 was used to alleviate over-fitting.
The PML (pytorch-metric-learning) library [28] is used to ap-
ply metric loss.

To evaluate the performance of our system, we calculate the
weighted accuracy (WA), which measures the overall classifica-
tion accuracy, and unweighted accuracy (UA), which measures
the average recall across various emotion categories.

3.3. Ablation Study

To assess the individual impact of each component of our
method, we create two additional comparison systems via abla-
tion. By doing so, we aim to better understand the significance
of each component and its contribution to the overall model per-
formance. Table 1 presents the results of this analysis. Model A
is the proposed model. Models B and C are derived from model
A by removing the FA mechanism from the crossmodal trans-
former and metric loss, respectively. To verify that the impact of
focus-attention mechanism that aligns modalities in crossmodal
transformer, we compare the performances of models A and B.
The experimental results presented in Table 1 show that model
A outperforms model B, reporting improvements of 1.2% and
2.2% for WA and UA, respectively. We can conclude that the
proposed method enables improved detection of salient parts in
other modality when cross-modal information provides latent
adaptation across modalities. To verify the effect of metric loss,
we comparatively assess the performance of models A and C.
Compared to model C, model A reported a significant improve-
ment of 2.2% and 4.74% for WA and UA, respectively. This
outcome indicates that an appropriate choice of the triplet loss
enhances the performance of a classifier.

Table 2 shows the outcomes of a study that examined the
influence of weights on the effectiveness of metric and cross-
entropy loss in a combined loss task. The model shows the best
performance when α is 0.5 and β is 1. The performance is better
when the CE and triplet losses are learned jointly than when the
CE loss is used alone.

Table 3 reports the experimental results for the various em-
bedding spaces on which the proposed metric loss method is
applied. We identify three distinct embedding spaces suitable
for our model. The first is the embedding in which the text-

Table 3: Experimental results on the effect of the position of
embedding applying the metric loss.

Embedding Space WA UA
Speech + Text Embedding 0.771 0.763
Speech Embedding 0.774 0.777
Text Embedding 0.756 0.749

Table 4: Classification performance of the proposed and other
relevant multimodal SER models on the dataset IEMOCAP.

Model WA UA
LSTM+Attn [11] 0.725 0.709
KS-transformer [14] 0.743 0.753
WISE [13] 0.759 0.764
LM-MulT [12] 0.768 0.771
MHA-2 [7] 0.765 0.776
Ours 0.774 0.777

enhanced speech and speech-enhanced text representations are
concatenated, which is passed through each of the crossmodal
transformers. The second and third embedding spaces are the
speech and text embedding, respectively, considered before they
are sent as input to the crossmodal transformers. We observe
that the application of the metric loss to speech embedding re-
sulted in a slight improvement in performance compared with
when the metric loss was applied to fused speech and text em-
bedding. Conversely, when the metric loss was applied solely
to text embedding, we observed a slight decrease in the per-
formance compared with that of the metric loss based on fused
speech and text. This may be caused by the lack of emotion data
to disentangle the text embedding into the emotion embedding
space by using metric loss.

3.4. Comparison with the Other Relevant Multimodal SER
Models

Additional experiments were conducted to validate the efficacy
of the proposed model by comparing it with other advanced
SER methods using the IEMOCAP dataset. Table 4 presents
the experimental results of the comparison, showing that the
proposed approach outperforms the other relevant multimodal
SER models in both WA and UA. This is due to the effective
joint loss and the exceptional ability of the multimodal fusion
method enhanced by FA to attend to the salient parts of each
modality. These results confirm that the proposed approach can
be used to improve the performance of SER.

4. Conclusions
In this paper, to enhance the efficiency of a multimodal SER
system, we introduced a novel cross-modal transformer archi-
tecture that incorporates an FA mechanism and jointly metric
loss method, demonstrating a superior emotional embedding
efficacy. Extensive experiments using the IEMOCAP dataset
showed that the proposed model outperforms other relevant
multimodal SER methods, achieving an average performance of
77.4% and 77.7% for WA and UA, respectively. Additionally,
we analyzed the effects on the model performance of various
emotion embedding spaces by using the metric loss.
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