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Abstract
Multi-channel speech enhancement systems usually consist
of spatial filtering such as minimum-variance distortionless-
response (MVDR) beamforming and post-processing, which re-
quire acoustic parameters including relative transfer function
(RTF), noise spatial covariance matrix (SCM), and a priori and
a posteriori signal-to-noise ratios (SNRs). In this paper, we
propose a deep neural network (DNN)-based parameter estima-
tion for MVDR beamforming and post-filtering. Specifically,
we propose to use a DNN to estimate the interchannel phase
differences of the clean speech and the speech presence proba-
bility (SPP), which are used to estimate the RTF and the noise
SCM for MVDR beamforming. As for the post-processing, we
adopt the iDeepMMSE framework in which another DNN is
employed to estimate the a priori SNR, speech power spectral
density, and SPP used to compute spectral gains. The proposed
method outperformed several previous approaches especially in
the PESQ scores for the CHiME-4 dataset.
Index Terms: multi-channel speech enhancement, interchannel
phase difference, RTF estimation, Deep Xi, iDeepMMSE.

1. Introduction
In the presence of background noise and reverberation, speech
enhancement is indispensable to ensure satisfactory perceptual
quality and intelligibility of the speech signal [1–22] and per-
formance of the subsequent speech applications such as speech
recognition [1–3, 7, 8], speaker recognition [23], meeting sum-
marization using smartphones [24], smart speakers [25], and
hearing aids [26]. Nowadays many devices are equipped with
multiple microphones, which enables multi-channel speech en-
hancement exploiting spatial information in addition to the
spectro-temporal characteristics [1–6, 9–17]. One of the pop-
ular configurations is to apply spatial filtering such as the
minimum-variance distortionless response (MVDR) beamform-
ing and then process the output with a single-channel post-
filtering [3, 4, 7, 22].

Recently, various deep learning approaches to the multi-
channel speech enhancement have been proposed [1–6, 12–15].
These approaches can be classified into two categories. One is
the neural beamforming in which a deep neural network (DNN)
directly learns the relationship between multiple noisy inputs
and output in an end-to-end way [2, 5, 6, 12–15]. The other ap-
proach is to combine deep learning with conventional beam-
forming methods, which often require the estimation of the
acoustic parameters representing spatial and spectro-temporal
characteristics such as the direction of arrival (DoA), relative
transfer function (RTF), spatial covariance matrices (SCMs),
and power spectral densities (PSDs) for speech and noise
[1, 3, 4].

Many studies in the second category estimate SCMs using
masks or signals estimated by DNNs [1, 3, 4]. In [3], the com-
plex spectral mapping approach was proposed, but the DNNs
which estimate the signals used to obtain the SCMs operated
separately for each microphone without utilizing spatial infor-
mation. While [4] uses the dominant eigenvector of the noisy
SCM as a DNN input which considers the spatial information,
it still had a limitation that the output is limited to the masks
or SPPs. Also, since they computed the SCMs by averaging
masked signals for all the frames, it was difficult to deal with
the abrupt changes in signal statistics.

In this paper, we propose a DNN-based acoustic and sta-
tistical parameter estimation for the MVDR beamformer and
post-filter. Specifically, we utilize a DNN to estimate the phase
differences for clean speech and a posteriori speech presence
probability (SPP), which are used to obtain the RTF and es-
timate the noise SCM through uni- or bi-directional multi-
channel minima-controlled recursive averaging (MC-MCRA)
for the MVDR beamformer. We also exploit another DNN to
estimate the a priori signal-to-noise ratios (SNRs), speech PSD,
and a posteriori SPP used for a single-channel post-filter adopt-
ing the iDeepMMSE framework [20]. The proposed method
exhibited superior multi-channel speech enhancement perfor-
mance compared to the previously proposed approaches in the
experiments on the CHiME-4 dataset.

2. MVDR beamforming and post-filtering
Suppose that an array ofM microphones captures speech signal
from a speaker in the presence of additive noises and reverbera-
tion. The observed microphone signals can be expressed in the
short-time Fourier transform (STFT) domain as

y(l, k) = s(l, k) + v(l, k)

= g(l, k)S1(l, k) + v(l, k), (1)

for l = 1, 2, ..., L, and for k = 1, 2, ...,K, where L is
the number of frames, K is the number of frequency bins,
and y(l, k) = [Y1(l, k), Y2(l, k), ..., YM (l, k)]T , s(l, k) =
[S1(l, k), S2(l, k), ..., SM (l, k)]T , and v(l, k) = [V1(l, k),
V2(l, k), ..., VM (l, k)]T , in which Ym(l, k), Sm(l, k), and
Vm(l, k) are the STFT coefficients of the noisy speech, clean
speech, and noises including reverberations at the m-th micro-
phone, respectively, and g(l, k) = [1, g2(l, k), ..., gM (l, k)]T

is the RTF vector. When we assume Sm(l, k) and
Vm(l, k) are uncorrelated, the SCMs for the y(l, k), s(l, k),
and v(l, k), Φy(l, k) = E[y(l, k)yH(l, k)], Φs(l, k) =
E[s(l, k)sH(l, k)], and Φv(l, k) = E[v(l, k)vH(l, k)], are re-
lated as Φy(l, k) = Φs(l, k) + Φv(l, k).

The objective of the multi-channel speech enhancement is
to obtain clean speech at the reference microphone S1(l, k)
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from the observed microphone signals y(l, k). One of the pop-
ular approaches to the multi-channel speech enhancement is to
apply spatial filtering first and then employ single-channel post-
filtering. One of the widely-used spatial filtering methods is the
MVDR beamformer. The MVDR beamformer is a linear filter
applied to y(l, k) to produce the output Z(l, k), i.e.,

Z(l, k) = wH
mvdr(l, k)y(l, k), (2)

where the beamformer weights wmvdr are designed to mini-
mize the noise power at the output with the constraint on dis-
tortionless target speech. The MVDR beamformer can be de-
scribed as a function of Φv(l, k) and g(l, k) as

wmvdr(l, k) =
Φ−1

v (l, k)g(l, k)

gH(l, k)Φ−1
v (l, k)g(l, k)

. (3)

As the spatial filtering cannot completely suppress noises,
the post-filtering often follows the spatial filtering to further en-
hance the speech signal. Let us denote the residual noise at the
beamformer output as O(l, k), i.e.,

Z(l, k) = S1(l, k) +O(l, k). (4)

Adopting the minimum mean square error log-spectral am-
plitude (MMSE-LSA) [21] clean speech estimator, the clean
speech spectrum can be estimated by applying the gain func-
tion Gmmse−lsa(l, k) to the beamformer output Z(l, k) as

Ŝ1(l, k) = Gmmse−lsa(l, k)Z(l, k), (5)

where Gmmse−lsa(l, k) is given by

Gmmse−lsa(l, k) =
ξ(l, k)

ξ(l, k) + 1
exp

{
1

2

∫ ∞

v(l,k)

e−t

t
dt

}
, (6)

in which v(l, k) = [ξ(l, k)/(ξ(l, k) + 1)]γ(l, k), ξ(l, k) is the
a priori SNR and γ(l, k) is the a posteriori SNR defined as

ξ(l, k) =
ϕs(l, k)

ϕo(l, k)
, γ(l, k) =

|Z(l, k)|2
ϕo(l, k)

, (7)

where ϕs(l, k) = E[|S1(l, k)|2] and ϕo = E[|O(l, k)|2] are
the PSDs of the S1(l, k) and O(l, k), respectively.

Note that estimates for Φv and g are required to implement
the MVDR beamforming in (2), and estimates for ξ and γ are
needed for the post-filtering in (5). In this paper, we propose
to incorporate DNNs to estimate these parameters for the multi-
channel speech enhancement.

3. DNN-based parameter estimation for
beamforming and post-filtering

The overall block diagram for the proposed multi-channel
speech enhancement system is presented in Fig. 1. DNN1 es-
timates the a posteriori SPP and the interchannel phase differ-
ences (IPDs) for the clean speech from the IPDs for the input
signal and the magnitude spectrum of the reference microphone
signal, which in turn are used to obtain Φ̂v and ĝ for the MVDR
beamformer. DNN2 is employed to obtain the a priori SNR,
speech PSD and a posteriori SPP needed for the post-filtering
in the iDeepMMSE framework [20]. Detailed descriptions of
the blocks are given in the following subsections.

3.1. DNN-based parameter estimation for MVDR beam-
forming

To implement wmvdr(l, k) in (3), Φv(l, k) and g(l, k) need
to be estimated. Among various approaches to the noise SCM
estimation, we adopt the MC-MCRA approach [17] and option-
ally extend it to a bi-directional version. Let two hypotheses
H0 and H1 denote speech absence and presence, respectively.
The estimate of Φv(l, k), Φ̂f

v(l, k), may be updated under each
hypothesis as

H0(l, k) : Φ̂
f
v(l, k) =αvΦ̂

f
v(l − 1, k) (8)

+ (1− αv)y(l, k)y
H(l, k),

H1(l, k) : Φ̂
f
v(l, k) =Φ̂f

v(l − 1, k), (9)

where αv is a constant parameter. Combining the update equa-
tions under two hypotheses using the a posteriori SPP ps(l, k),
the MC-MCRA noise SCM estimator can be derived as

Φ̂f
v(l, k) = α̃v(l, k)Φ̂

f
v(l − 1, k)

+ (1− α̃v(l, k))y(l, k)y
H(l, k) (10)

for l = 1, 2, ..., L, where α̃v(l, k) = αv + ps(l, k)(1− αv) is
an SPP-dependent smoothing parameter. As for the offline ap-
plications such as meeting summarization [24], the MC-MCRA
approach can also be applied in the backward direction, i.e.,

Φ̂b
v(l, k) = α̃v(l, k)Φ̂

b
v(l + 1, k)

+ (1− α̃v(l, k))y(l, k)y
H(l, k) (11)

for l = L,L− 1, ..., 1 and Φ̂b
v(l, k) is the noise SCM estimate

in the backward direction. The final estimate for the noise SCM
in the bi-directional MC-MCRA (BMC-MCRA) is given by

Φ̂v(l, k) = 0.5 · Φ̂f
v(l, k) + 0.5 · Φ̂b

v(l, k). (12)

It is noted that the key parameter for both uni-directional and
bi-directional MC-MCRA is the a posteriori SPP ps(l, k). In
this paper, we employ a DNN to estimate ps(l, k). The training
target for the ps(l, k) is constructed by thresholding the SNR:

ps(l, k) =

{
1 if |S1(l,k)|2

|V1(l,k)|2
> η

0 otherwise,
(13)

where η is the threshold.
On the other hand, we estimate the RTF g(l, k) under the

far-field assumption [16], i.e., |gm| = 1 for m ∈ {1, ...,M}.
Then, the RTF is given as a simple function of the IPD for the
clean speech, ψm(l, k):

gm(l, k) = exp{j · ψm(l, k)}, (14)

where ψm(l, k) = ∠Sm(l, k) − ∠S1(l, k). Although the far-
field assumption is not always met in practical scenarios, this
simplified model may make the RTF estimation more robust in
the presence of severe noises. In this paper, we propose to es-
timate the IPDs for the clean speech, ψm(l, k), from the IPDs
for the noisy signals, θm(l, k) = ∠Ym(l, k) − ∠Y1(l, k), us-
ing a DNN as in [27]. In [27], the sine and cosine functions
of the IPDs are used as inputs and outputs of the DNN. In this
paper, we slightly modify them so that the inputs and outputs
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Figure 1: Block diagram of the proposed multi-channel speech enhancement system.

have values between 0 and 1:

Ψm(l, k) =[
sinψm(l, k) + 1

2
,
cosψm(l, k) + 1

2
], (15)

Θm(l, k) =[
sin θm(l, k) + 1

2
,
cos θm(l, k) + 1

2
], (16)

m ∈ {2, ...,M},

which are the training targets and inputs, respectively.
Combining the tasks to estimate the a posteriori SPP ps

in (13) and sinusoidal functions of clean IPDs ψm in (15), we
propose to exploit one DNN to estimate both of the parameters
at once, given the magnitude spectrum of the noisy speech at the
reference microphone and the sinusoidal functions of the noisy
IPDs Θm in (16), which is expressed as

[p̂s, Ψ̂2, ..., Ψ̂M ] = DNN1(|Y1|,Θ2, ...,ΘM ), (17)

where p̂s = {p̂s(l, k)|1 ≤ k ≤ K}, Ψ̂m = {Ψ̂m(l, k)|1 ≤
k ≤ K}, |Y1| = {|Y1(l, k)||1 ≤ k ≤ K, 1 ≤ l ≤ L},
Θm = {Θm(l, k)|1 ≤ k ≤ K, 1 ≤ l ≤ L}, and DNN1(·)
can be any DNN architecture that can effectively deal with cor-
related signals. p̂s is used to compute Φ̂v in (10) or (12) and
Ψ̂m is converted to ψ̂m using the four-quadrant inverse tangent
function, which in turn is used to compute gm as in (14).

3.2. iDeepMMSE framework for post-filtering

To evaluate the gain function in (6), the a priori and a poste-
riori SNRs should be estimated. In this paper, we adopt the
iDeepMMSE framework [20] which employs a DNN to esti-
mate the a priori SNR, speech PSD and a posteriori SPP from
the noisy magnitude spectrogram. While the original iDeep-
MMSE framework was applied to the input signal for single-
channel speech enhancement, we employ this approach for the
enhancement of the beamformer output Z. In the signal model
in (4), we want to estimate S1(l, k) in the presence of addi-
tive residual noise O(l, k). Let ϕs and ϕo denote the PSDs for
S1(l, k) and O(l, k), respectively. The training target for the a
priori SNR is set to be the instantaneous SNR given by [19]

ξinst(l, k) =
|S1(l, k)|2
|O(l, k)|2

. (18)

Instead of directly estimating ξinst(l, k) which has a large dy-
namic range, a function of it, ξ̄(l, k), that has a value between 0
and 1 given by

ξ̄(l, k) =
1

2

[
1 + erf

(
ξinst
dB (l, k)− µ(k)

σ(k)
√
2

)]
, (19)

is estimated in [19], where erf(·) is the error function,
ξinst
dB (l, k) = 10 log10(ξ

inst(l, k)) and µ(k) and σ(k) are the
mean and standard deviation of ξinst

dB (l, k) in the k-th frequency
bin for the training data filtered with the MVDR beamformer
with ground truth Φv and g. The training target for the a pos-
teriori SPP is constructed in a similar way to (13) replacing V1

with O, while that for the speech PSD is set through a dynamic
range compression similar to (19) as described in [20].

In the inference phase of iDeepMMSE, mapped versions
of the a priori SNR ξ̄ and speech PSD ϕ̄s along with the a
posteriori SPP p̃s, are obtained from Z using another DNN:

[ ˆ̄ξ, ˆ̄ϕs, p̃s] = DNN2(|Z|), (20)

where DNN2(·) can also be any DNN architecture. It is noted
that p̃s is not directly related to p̂s obtained in (17), although
they may be combined in the future. The estimates for the a
priori SNR and speech PSD are obtained using the inverse func-
tions, respectively, as

ξ̂(l, k) = 10{σ(k)
√
2erf−1(2ˆ̄ξ(l,k)−1)+µ(k)}/10, (21)

ϕ̂s(l, k) = 10{σs(k)
√

2erf−1(2 ˆ̄ϕs(l,k)−1)+µs(k)}/10, (22)

where µs(k) and σs(k) are estimated from the histogram of
|S1|2 in the speech active time-frequency bins [20]. The es-
timated parameters are then utilized to evaluate the MMSE
speech and noise power spectrum estimators. These estimators
under the speech presence uncertainty are given as

|̂S1|2 =E(|S1|2|Z, ϕs, ϕo)

=p(H0|Z) · E(|S1|2|Z, ϕs, ϕo, H0)

+ p(H1|Z) · E(|S1|2|Z, ϕs, ϕo, H1), (23)

|̂O|2 =E(|O|2|Z, ϕs, ϕo)

=p(H0|Z) · E(|O|2|Z, ϕs, ϕo, H0)

+ p(H1|Z) · E(|O|2|Z, ϕs, ϕo, H1), (24)

where p(H1|Z) = p̃s and p(H0|Z) = 1− p(H1|Z), and

E(|S1|2|Z, ϕs, ϕo, H0) =0, (25)

E(|O|2|Z, ϕs, ϕo, H0) =|Z|2, (26)

E(|S1|2|Z,ϕs, ϕo, H1)

=

(
ϕs

ϕo + ϕs

)2

|Z|2 + ϕo

ϕs + ϕo
ϕs, (27)
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E(|O|2|Z,ϕs, ϕo, H1)

=

(
ϕo

ϕo + ϕs

)2

|Z|2 + ϕs

ϕs + ϕo
ϕo. (28)

(27) and (28) are evaluated using ϕ̂s and ϕ̂o = 1

1+ξ̂
|Z|2. Then,

the refined speech and noise PSDs can be obtained by applying

temporal recursive smoothing to |̂S1|2 and |̂O|2 as

ϕ̂r
s(l, k) = αsϕ̂

r
s(l − 1, k) + (1− αs)|̂S1|2(l, k), (29)

ϕ̂r
o(l, k) = αoϕ̂

r
o(l − 1, k) + (1− αo)|̂O|2(l, k), (30)

where the superscript r denotes they are refined versions and αs

and αo are smoothing parameters. Using ϕ̂r
s(l) and ϕ̂r

o(l), we
can refine the estimates for the a priori and a posteriori SNRs
as

ξ̂r(l, k) =
ϕ̂r
s(l, k)

ϕ̂r
o(l, k)

, γ̂r(l, k) =
|Z(l, k)|2

ϕ̂r
o(l, k)

. (31)

Finally, the gain function (6) is evaluated using ξ̂r and γ̂r .

4. Experiments
4.1. Experimental settings

For the experiments, we used the simulated set with 6 micro-
phones in the CHiME-4 database [28]. Four noise scenarios
are considered in the dataset including the bus, cafe, pedes-
trian area, and street junction noises. The training set consists
of 7,138 utterances from 83 speakers, while the development
and evaluation sets are 1,640 and 1,320 utterances, respectively,
spoken by 4 different speakers. The sampling rate was 16 kHz,
and the frame size was 32ms with 50% overlap. A square-root
Hann window was used for analysis and synthesis, and the 512-
point STFT was applied. The fifth microphone located at the
bottom center on the frontal surface of the tablet device was se-
lected as the reference channel for the algorithms and the eval-
uations. The parameter values for αv , αs, αo, and η were set to
0.9, 0.0, 0.0, and -12 dB, respectively.

As for the architectures for the DNNs in (17) and (20), we
adopted the Conformer [29] for both of them, which can ef-
ficiently capture both the local and global sequential informa-
tion. Each Conformer block includes a multi-head self-attention
module and Convolution module sandwiched by two feed-
forward modules, followed by layer normalization [29]. Af-
ter the repeated stacks of Conformer blocks, a fully-connected
layer with sigmoidal activation is placed to produce the out-
puts. The dimension of DNN output was 2827 (= 257 × 11)
for DNN1 and 771 (= 257× 3) for DNN2. The other configu-
rations for the network structure were the same as what are de-
scribed in [20]. The loss function to train both of the networks
was the binary cross entropy. We used Adam optimizer [30]
with CosineAnnealingWarmRestarts scheduler [31]. The maxi-
mum number of epochs was 500 and the mini-batch size was 5
and the best epoch was chosen based on the validation loss.

The performance of the proposed method is compared with
recent papers reporting the performances for CHiME-4 dataset
[1–6] in terms of the wideband (WB) and narrowband (NB) per-
ceptual evaluation of speech quality (PESQ) scores [32], short-
time objective intelligibility (STOI) [33], and scale-invariant
signal-to-distortion ratio (SI-SDR) [34]. For the papers that re-
ported performances for multiple configurations, the systems
with the highest performance were compared.

Table 1: The performance of multi-channel speech enhance-
ment for the previous approaches and the proposed methods on
the CHiME-4 dataset.

NB PESQ WB PESQ STOI SI-SDR

Noisy 2.18 1.27 0.87 7.51

Li et al. [1] 2.68 - 0.95 14.10

Zhang et al. [2] 2.96 - 0.96 17.52

Wang et al. [3] 3.68 - 0.986 22.0

Pfeifenberger et al. [4] - 1.86 - -

Tolooshams et al. [5] - 2.436 - 18.635

Lee et al. [6] - 2.67 0.973 19.67

Proposed (MC-MCRA) 3.43 3.00 0.971 18.54

Proposed (BMC-MCRA) 3.48 3.09 0.974 19.31

4.2. Experimental results

Table 1 shows the performances for the previous approaches
and the proposed methods with the MC-MCRA and BMC-
MCRA noise SCM estimators on the CHiME-4 dataset. It is
noted that some papers showed NB PESQ scores, while oth-
ers reported WB PESQ scores. Among the compared methods,
Wang et al. [3] showed the best performance with considerably
more parameters of around 26 million compared with the pro-
posed system which had 8.3 million parameters. Lee et al. [6]
exhibited higher SI-SDR and similar STOI compared with the
proposed method, but showed much lower WB PESQ scores.
The proposed method outperformed other approaches in terms
of the PESQ scores, STOI, and SI-SDR and the adoption of
the bi-directional MC-MCRA further improved them. Espe-
cially, the average WB PESQ score for the proposed method
with the BMC-MCRA was significantly higher than those for
Lee et al. [6], Tolooshams et al. [5], and Pfeifenberger et al. [4]
with margins of 0.42, 0.654, and 1.23, respectively.

5. Conclusion
In this paper, we propose a deep learning approach to the acous-
tic and statistical parameter estimation for multi-channel speech
enhancement. We propose to adopt a DNN to estimate the a
posteriori SPP and the IPDs for clean speech, which are used
to estimate the noise SCM and RTF needed to construct the
MVDR beamformer. In addition, we optionally apply the bi-
directional MC-MCRA approach for the noise SCM estimation
for offline applications. As for the post-filter, we follow the
iDeepMMSE framework to estimate the a priori SNR, speech
PSD, and a posteriori SPP with another DNN and compute
spectral gains using them. Experimental results on the CHiME-
4 dataset showed that the proposed method outperformed sev-
eral previous approaches especially in the PESQ scores.
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