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Abstract
The tendency of people to engage in similar, matching, or syn-
chronized behaviour when interacting is known as entrainment.
Many studies examined linguistic (syntactic and lexical struc-
tures) and paralinguistic (pitch, intensity) entrainment, but less
attention was given to finding the relationship between them. In
this study, we utilized state-of-the-art DNN embeddings such
as BERT and TRIpLet Loss network (TRILL) vectors to ex-
tract features for measuring semantic and auditory similarities
of turns within dialogues in two comparable spoken corpora of
two different languages. We found people’s tendency to entrain
on semantic features more when compared to auditory features.
Additionally, we found that entrainment in semantic and audi-
tory linguistic features are positively correlated. The findings
of this study might assist in implementing the mechanism of
entrainment in human-machine interaction (HMI).
Index Terms: entrainment, alignment, semantic information,
DNN embeddings, TRILL vectors

1. Introduction
Entrainment is the tendency of a speaker to adjust some prop-
erties of a speaker’s features to match the interlocutor’s char-
acteristics. It has been found to correlate with positive social
attributes such as likeability [1], task success [2], and even rap-
port with a robot [3]. According to the psycholinguistics litera-
ture, entrainment affects various linguistic dimensions, such as
lexical choice [4], syntactic structure [5], or acoustic-prosodic
features [6].

Several studies have investigated the effects of entrainment
utilizing different modalities and implemented it in Spoken Di-
alogue Systems (SDS) [3, 7, 8]. In SDS, speech entrainment
functionality would enable machines to dynamically entrain
and disentrain on various auditory features, which might re-
sult in more efficient, successful, natural, and pleasing interac-
tions. Similarly, implementing semantic entrainment function-
ality would enable machines to align semantically with humans
resulting in more meaningful conversations. An essential first
step toward effectively implementing entrainment in SDS is un-
derstanding how entrainment works at different linguistic levels
and what their relationships are. Understanding these variations
will allow us to weigh them meaningfully when they are com-
bined to develop SDS systems equipped with effective entrain-
ment functionalities.

Entrainment has previously been studied independently us-
ing linguistic-related parameters [9] or paralinguistic-related
parameters [10, 11]. Additionally, researchers have started ex-
ploring the correlation between entrainment at different lin-
guistic levels. For instance, [12] explored the relationship be-
tween prosodic, lexical, semantic, and syntactic entrainment

among individuals with autism spectrum disorder (ASD). The
results revealed distinct patterns of prosodic and lexical en-
trainment. Similarly, [13] explored the correlation between
acoustic-prosodic and syntactic entrainment within a dialogue.
They reported speakers entrain on some but not all features
within a linguistic level. Furthermore, [14] reported corre-
lations between acoustic-prosodic and lexical entrainment in
group conversations. On the contrary, [15] found that none
of the acoustic-prosodic and lexical entrainment measures were
meaningfully correlated, clustered, or exhibited principal com-
ponents. Hence, the results of studies exploring the relationship
of entrainment at different levels are inconclusive.

In a recent study [16], DNN embeddings were used to ex-
plore the relationship between acoustic-prosodic and semantic
entrainment. The authors proposed measures of “semantic sim-
ilarity” of dialogues using BERT embeddings trained on a Chi-
nese spoken corpus. They reported an inverse relationship be-
tween them: interlocutors did not adjust prosodic features when
their semantics were closer to their partners. However, these
results and their wider impact on SDS applications should be
interpreted with caution since there were three limitations to
the given study. First, the question-response system in Chi-
nese conversations was analyzed. The authors did not provide a
cross-linguistic comparison, which would allow observing the
trends and underlying patterns by comparing auditory and se-
mantic entrainment in different languages. Second, the authors
introduce convergence and synchrony as entrainment metrics.
Convergence implies people become more similar over the pe-
riod of time. Synchrony means people are consistently behaving
in similar way. The authors did not consider proximity as an en-
trainment metric which is helpful in understanding if two people
are getting semantically closer to each other at a given time. In a
session that displays proximity, the speaker turns are more sim-
ilar to the immediately adjacent turns of the interlocutor than to
other random interlocutor’s turns [11]. Information about prox-
imity might be valuable for turn-to-turn implementation of en-
trainment into automatic SDS. Last, the authors did not report if
BERT embeddings were normalized or not. Usually, BERT em-
beddings are not normalized and utilizing Pearson’s correlation
can provide inconsistent results. There is a high degree of sen-
sitivity in Pearson’s r to even minor deviations from normality,
where an outlier can hide an underlying association [17]. Using
a novel approach in this study, we describe linguistic informa-
tion and analyze the entrainment relationship between two dif-
ferent linguistic levels by utilizing different entrainment metrics
(proximity, convergence, and synchrony) on two different spo-
ken corpora using different languages.

Empirical studies exploring the entrainment relationship
between different linguistic levels have found variable results
so far. There might be three possible reasons associated with
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it. First, entrainment in linguistic levels has been analyzed
using different methods. For example, in [13], the authors
measured acoustic-prosodic entrainment using the metrics pro-
posed in [6], which measures correlations among adjacent turns.
In contrast, they analyzed syntactic entrainment with general-
ized logit mixed-effect models (GLMM) [18]. Second, differ-
ent toolkits are utilized for feature extraction. For example, in
[13], researchers used the PRAAT toolkit [19] for extracting 323
temporal and acoustic-prosodic features, whereas [12] derived
pitch, intensity, and rhythm-related features using the contour-
based, parametric, and super positional intonation stylization
(CoPaSul) toolkit that uses some different feature extraction
and manipulation approaches [20]. Lastly, researchers mea-
sured similarity using different units of analysis. In [15], au-
thors measure acoustic-prosodic entrainment on the inter-pausal
unit (IPU)1, whereas they measured lexical entrainment using
n-gram sequences. In this study, we will extract features and
measure entrainment using the same methodology in an effort
to limit the mentioned sources of variability in results.

Finally, empirical findings on entrainment suggest it is a
complex phenomenon where people entrain/dis-entrain on dif-
ferent para-linguistic features [6]. Earlier studies on entrain-
ment have utilized paralinguistic features that incorporate spec-
tral, temporal, and acoustic-prosodic features. A DNN embed-
ding can solve the problem of fragmentation in para-linguistic
features. DNN embedding is a method used to represent dis-
crete variables as continuous vectors. DNN embedding using
textual modality such as transformer [21] is immensely pop-
ular and has broader applications in NLP applications. Sim-
ilarly, DNN embedding using auditory modality has provided
promising outcomes in improving the performance of auto-
matic speech recognition and other applications. In [22], the
TRILL vector was proposed, which creates embeddings based
on a CNN architecture that uses triplet-loss representation. This
approach maps audio segments that appear nearer in time to
be nearer in the embedding space. A comparison of differ-
ent auditory features such as Low-level descriptors (LLD) fea-
tures, spectral features, and DNN audio embeddings (x-vectors,
TRILL vectors) was presented in [23]. In comparison to differ-
ent auditory features, TRILL vectors provided greater classifi-
cation accuracy in this study. Hence, we employ this method in
our work to compare the acoustic and semantic entrainment.

In sum, research into speech entrainment has so far been
fragmented, with numerous individual features and measures
of similarity being used, but no attempts have been made prior
to our knowledge that measures auditory similarity using DNN
embeddings. With a long-term goal to develop an effective
SDS, we analyze in this study auditory and semantic entrain-
ment in comparable corpora of conversational speech in En-
glish and Slovak. Our paper makes three main contributions.
First, we measured entrainment in conversational corpora using
state-of-the-art DNN embeddings on semantic and auditory lev-
els. Second, we explore the relationship between the two levels
using the same methodology. Finally, the experimental result
shows that entrainment in both levels is correlated positively in
both spoken corpora.

2. Data and features
In this section, we describe two task-oriented spoken language
corpora we analysed in the current study, how we extracted se-

1IPU is a pause-free unit in turn separated by at least 50 ms. of
silence

mantic and auditory features from them, and how we calculated
metrics for measuring auditory and semantic entrainment.

2.1. Dataset

2.1.1. Columbia Games Corpus

The Columbia Games Corpus [24] consists of 12 spontaneous
dyadic conversations between native Standard American En-
glish (SAE) speakers. Participants included thirteen individu-
als (six females and seven males); eleven participated in two
sessions on different days and with other partners. Each dyad
played four computer games of two kinds: Cards games and
Objects games involving communication and teamwork. The
subjects did not have visual contact due to a curtain placed be-
tween them ensuring verbal communication only. Twelve ses-
sions were recorded, totaling 9 hours and 13 minutes. The
subset of the Columbia Games Corpus most closely resem-
bling spontaneous task-related conversations, namely the Ob-
jects game, was used for the current study, which roughly com-
prises 4.3 hours of speech data.

2.1.2. SK-Games Corpus

The SK-games corpus [25] is identical to the Objects games of
the Columbia Games Corpus for SAE, except for changes in
some screen images and their locations. The corpus contains
nine dyadic conversations recorded by native speakers of Slo-
vak. Eleven speakers (five females and six males) participated
in the study; seven participated in two sessions, each with a
different partner. The corpus involves 6.3 hours of spoken dia-
logue.

2.2. Feature extraction

The semantic and auditory linguistic levels of entrainment are
analysed in each corpus. To extract semantic features, each
turn in the dialog is encoded into a fixed-length vector (em-
beddings). For the Columbia games corpus, we used a neu-
ral network-trained model (SBERT) [26], representing 768 one-
dimensional semantic features for each turn. Similarly, for the
SK-Games corpus, we used the Slovak masked language model
called SlovakBERT [27] where each turn is encoded into 768
one-dimensional semantic features. Furthermore, to extract au-
ditory features for each turn, the TRILL vector [28] is used, rep-
resenting 512 one-dimensional auditory features per turn. Since
the TRILL vector model is language-independent, we used the
same model on both the spoken corpora.

2.3. Entrainment metrics

In [10], the authors introduced three measures of entrainment:
Proximity describes the similarity of interlocutor’s speech at
turn exchanges. Convergence quantifies the tendency when two
speaker’s speech becomes more similar throughout the conver-
sation. Synchrony describes the entrainment by direction where
speaker’s prosodic features become correlated to his/her inter-
locutor. Based on the definition of the given metrics we used the
same metrics for the current study. In earlier studies, absolute
values were used to measure entrainment on acoustic-prosodic
features. Since we are using DNN embeddings in the current
study, the metrics are re-defined.

Proximity is measured using paired t-tests on two sets of
differences: a set of adjacent distance (Eq.1) and another cor-
responding set of non-adjacent distance (Eq.2). Adjacent dis-
tance is the cosine distance between speaker’s embeddings and
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his/her conversational partners adjacent embeddings. On the
other hand, non-adjacent distance is the cosine distance between
the embeddings of a speaker and other random non-adjacent
embeddings of his/her conversational partner. For ten random
turns of another speaker, we measured the non-adjacent distance
and calculated the mean. If the cosine distance of the adjacent
distance is greater than the non-adjacent distance, we can infer
that speakers are getting closer to each other.

adjacent distance = cos(A,B) =
A ·B
|A||B| (1)

non− adjacent distance =
10∑

i=1

cos(A,Brand) (2)

Convergence is measured by Pearson’s correlation between co-
sine distance between adjacent turns and turn number (time).
Synchrony is measured using Pearson’s correlation on two sets
of self-distance of speaker A and B. Self-distance (Eq.3) of a
speaker is measured using cosine similarity between two con-
secutive turns of the same speaker.

self distance = cos(Ai, Ai+1) (3)

3. Results
3.1. Auditory and semantic entrainment using DNN

Proximity Convergece Synchrony
Auditory Semantic Auditory Semantic Auditory Semantic

Session t Sig. t Sig. r Sig. r Sig. r Sig. r Sig.
1 4.04 * 3.28 * 0.02 0.03 0.03 0.03
2 -0.05 4.44 * 0.11 + -0.02 -0.02 0.08
3 -0.28 1.05 -0.09 -0.13 + -0.13 + -0.07
4 3.05 * 5.03 * -0.08 -0.08 -0.08 0.01
5 3.01 * 3.01 * -0.13 + -0.01 -0.01 -0.06
6 2.36 + 4.28 * -0.02 -0.04 -0.04 0.16 +
7 1.32 2.87 + 0.03 0.09 + 0.09 + 0.04
8 -0.02 3.13 * -0.06 0.05 0.05 0.01
9 -1.92 0.15 0.10 -0.01 -0.01 0.06
10 -0.11 2.27 + 0.06 0.10 * 0.10 * -0.06
11 -2.19 + 1.84 -0.15 * -0.11 + -0.11 + 0.04
12 2.06 + 3.12 * -0.03 0.03 0.03 0.00

(a) Columbia games corpus (CGC)

1 -0.21 0.65 -0.09 + 0.06 -0.01 0.07
2 0.03 4.39 * 0.15 * 0.09 -0.18 + 0.05
3 1.33 3.32 * 0.03 0.02 -0.05 -0.04
4 -0.38 -0.04 0.09 + 0.01 -0.01 0.08
5 -0.02 0.94 -0.11 + -0.06 -0.09 0.00
6 -3.88 * -3.86 * 0.05 0.00 0.06 0.11
7 3.14 * 4.62 * -0.09 -0.18 * -0.07 0.11
8 1.86 3.86 * 0.10 * -0.02 0.07 0.12 *
9 0.67 2.08 + 0.04 0.03 0.01 0.02

(b) SK Games corpus

Table 1: Summary of entrainment results on auditory and se-
mantic entrainment in (a) Columbia games corpus and (b) Sk-
games corpus with significant results after Bonferroni correc-
tion (*) with α = 0.004 and 0.005 for the English and Slovak
and without Bonferroni correction (+) with α = 0.05 entrain-
ment type (proximity, convergence, and synchrony)

3.1.1. Columbia-Games corpus

Table 1 (a) shows the auditory and semantic entrainment results
in the Columbia games corpus.

Proximity: The English dataset shows little evidence of lo-
cal proximity on auditory features. Only three sessions shows
evidence of positive proximity. On the semantic level, in con-
trast, we found seven sessions that showed positive proximity.

In addition, we observed that the distribution of the sessions
with positive proximity in two levels is not random and that in
all but one case, if people entrain on the auditory level they also
entrain on the semantic level.

Convergence: We found little evidence of convergence on
both levels in the Columbia games corpus. In auditory features,
only one session shows significant evidence of divergence, i.e.,
differences between partners increase over time. On the con-
trary, one session shows significant evidence of positive conver-
gence in semantic features.

Synchrony: The auditory features showed little evidence of
synchrony. Only one session shows evidence of positive syn-
chrony. Positive synchrony implies both the speakers are mov-
ing in the same direction, i.e., if speaker A raises his/her voice,
then speaker B also raises his/her voice. On the contrary, we
did not find evidence of synchrony on semantic features in the
English corpus. Furthermore, before the Bonferroni correction,
we found that two sessions showed negative synchrony; one ses-
sion exhibited positive synchrony in semantic features, and one
session exhibited positive synchrony in auditory features.

3.1.2. SK-Games Corpus

Table 1 (b) shows the results of auditory and semantic entrain-
ment with proximity, convergence, and synchrony as entrain-
ment metrics based on the Slovak games corpus.

Proximity: The Slovak data shows little evidence of prox-
imity on the auditory level. For auditory features, only one ses-
sion shows evidence of positive proximity, and only one shows
negative proximity. On the contrary, four sessions show signif-
icant positive proximity for semantic features, while one shows
significant negative proximity. In addition, we observed a sim-
ilar pattern that we observed earlier in the English corpus, i.e.,
people entrain on both features when they entrain on auditory
features.

Convergence: We found little evidence of convergence on
both levels in the Slovak data. Two sessions display evidence
of positive convergence for auditory features. On the contrary,
only one session showed evidence of divergence on the seman-
tic level. Additionally, before applying the Bonferroni correc-
tion, we found that people converge on auditory features more
when compared to semantic features in the SK-games corpus.

Synchrony: The Slovak data shows little evidence of syn-
chrony on semantic features: One session shows positive syn-
chrony for semantic features. On the contrary, no session shows
evidence of synchrony in auditory features. In [11], the authors
reported negative synchrony is evident on almost every para-
linguistic (auditory) feature of the SK-games corpus. We found
similar evidence to be true where 6 out of 9 sessions show neg-
ative synchrony; however, they are not statistically significant.

3.2. Relationship between auditory and semantic entrain-
ment

We measured two sets of adjacent distances using (Eq. 1): a set
of adjacent distances on auditory features and another set of ad-
jacent distances on semantic features. We measured Pearson’s
correlation between adjacent distance on auditory and seman-
tic embeddings to investigate the relationship between semantic
and auditory features.

Columbia Games Corpus: Table 2 (left panel 1a) shows
results for the entrainment relationship between auditory and
semantic features using the SBERT model in English Data. We
found six sessions out of 12 exhibits a slightly significant pos-
itive correlation (mean r=0.21). To explore the potential effect
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Session r p-value Sig. r p-value Sig. r p-value Sig.
1 0.02 0.738 0.14 0.038 + 0.45 0.000 *
2 0.13 0.004 + 0.16 0.000 * 0.44 0.000 *
3 0.12 0.008 + 0.17 0.000 * 0.45 0.000 *
4 0.17 0.000 * 0.19 0.000 * 0.36 0.000 *
5 0.23 0.001 * 0.17 0.012 + 0.42 0.000 *
6 0.17 0.004 * 0.22 0.000 * 0.50 0.000 *
7 0.19 0.000 * 0.22 0.000 * 0.32 0.000 *
8 0.12 0.005 + 0.15 0.000 * 0.30 0.000 *
9 0.11 0.025 + 0.15 0.002 * 0.23 0.000 *
10 0.30 0.000 * 0.25 0.000 *
11 0.20 0.000 * 0.28 0.000 *
12 0.11 0.035 + 0.16 0.002 *

1) Using SBERT model 2) Using USE model

a) Columbia games corpus b) SK-games corpus

Table 2: Entrainment relationship between semantic and audi-
tory features in Columbia Games Corpus and SK-games corpus
after Bonferroni correction (*) with α = 0.004 and 0.005 for
the English and Slovak and without Bonferroni correction (+)
with α = 0.05

of the selection of language models (semantic model), we also
utilized Google’s Universal sentence encoder (USE) model [29]
for extracting semantic features for each turn. Using the USE
model, we measured adjacent distance on semantic features and
measured Pearson’s correlation between semantic and auditory
features. Table 2 (middle panel 2a) shows the entrainment re-
lationship between auditory and semantic features for the USE
model. We found ten sessions out of 12 exhibits a slightly pos-
itive correlation (mean r=0.20).

SK-Games Corpus: Table 2 (rightmost panel b) shows that
Slovak data has a stronger positive correlation between entrain-
ment in both linguistic levels than the English data where all the
sessions are positively correlated with mean r = 0.40.

4. Discussion and conclusion
We analyzed semantic and auditory entrainment using three dif-
ferent entrainment metrics over a total of 21 sessions of collab-
orative dyadic interactions in two languages. We observed the
following patterns that emerged from the analysis.

Firstly, proximity is more prevalent than synchrony and
convergence in both semantic and auditory entrainment. In both
languages, positive proximity is evident in a greater number of
dialogues compared to convergence and synchrony, indicating
the tendency of people to get closer to each other in both se-
mantic and auditory space at a given point in time.

Secondly, we found that semantic proximity is more preva-
lent than auditory proximity. In both datasets, we observed that
people entrain on semantic features more when compared to
auditory features. In general, when the semantics of two inter-
locutors become more similar, the interlocutor can understand
the content of the conversation more easily. One possible rea-
son for such a result can be traced to the type of corpora utilized
for entrainment analysis. We used task-oriented corpora where
the objective was to communicate about specific items in order
to reach a joint goal. Semantic entrainment is crucial in task-
oriented conversations like this since the task cannot be com-
pleted successfully without it. In contrast, auditory entrainment
is optional and may be used to support semantic entrainment
or indicate various aspects of the negotiation in terms of so-
cial relationship between the interlocutors. The findings of our
study might vary from analyzing entrainment in real-life con-
versational corpora where semantic and auditory entrainment
might weigh differently.

Thirdly, we noticed that semantic and auditory entrainment
are positively correlated. A positive relationship between dif-
ferent linguistic levels can be conceptualized as people who en-
train on one level are more likely to entrain on other levels. This
finding is consistent with the Interactive Alignment Model pro-
posed by [30]. This cognitive theory suggests that alignment at
one level leads to alignment at other levels. Our findings sug-
gest entrainment can be considered a single latent behavior or
a collection of linked behaviors where people aligning on audi-
tory features are more likely to align on semantic features. It is
interesting to note the directionality in our findings: semantic
entrainment implies auditory one whereas the reverse is not the
case. The results of our study may also inform models dealing
with the percolation of entrainment across linguistic levels.

Lastly, we noted that selecting a language model is cru-
cial in identifying the relationship between different linguistic
levels. We measured the relationship between auditory and se-
mantic linguistic levels using two different language models for
extracting semantic features in the English dataset. We found
variance in results where utilizing the SBERT model reported
six sessions are significantly positively correlated with mean r
of 0.20. In contrast, the USE model reported that ten sessions
are significantly positively correlated with mean r = 0.21. The
average results of correlations are almost identical (r = 0.2 and
0.21); however, the number of sessions that are significantly
positively correlated is different. A language model might ac-
count for such variability in results and when considering the
entire corpus, differences are smoothed out.

In the Slovak dataset, we found a relatively stronger correla-
tion between auditory and semantic entrainment with mean r =
0.40 on all sessions. It remains to be explored if this difference
stems from the difference among the patterns of entrainment in
Slovak and English or if, in part, it might stem from the selec-
tion of the language model as both datasets in the current study
are similar. We did not find any other language models trained
in Slovak due lower NLP resources compared to English. Ex-
tracting semantic features from different language models could
allow us to have a more meaningful comparison and understand
if such a stronger correlation is due to the language model.

To conclude, in earlier studies researchers used fragmented
features and different methods to measure entrainment, which
might have contributed to the variation in results. We mea-
sured entrainment using the comparable methodology on differ-
ent levels and in different languages, and our measures captured
entrainment patterns that differ from previous studies, e.g. [16].
This further implies that methodology and features utilized for
measuring entrainment play an important role in finding the re-
lationship between different levels. In our future work, we plan
to investigate entrainment relationships also on other linguistic
levels, such as lexical and syntactic, and analyze the entrain-
ment relationships among them. This will allow us to pursue de-
veloping SDS whose entrainment functionalities are informed
by the relationship among entrainment on different linguistic
levels, which could provide a more naturalistic conversational
experience in future human-machine spoken interactions.

5. Acknowledgements
This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 859588 and in
part from the Slovak Granting Agency grant VEGA2/0165/21
and Slovak Research and Development Agency grant APVV-
21-0373.

2626



6. References
[1] M. E. Ireland, R. B. Slatcher, P. W. Eastwick, L. E. Scissors,

E. J. Finkel, and J. W. Pennebaker, “Language style matching pre-
dicts relationship initiation and stability,” Psychological Science,
vol. 22, no. 1, p. 39–44, 2011.

[2] D. Reitter and J. D. Moore, “Predicting success in dialogue,”
in Proceedings of the 45th Annual Meeting of the Association
of Computational Linguistics. Prague, Czech Republic: Asso-
ciation for Computational Linguistics, Jun. 2007, pp. 808–815.
[Online]. Available: https://aclanthology.org/P07-1102

[3] N. Lubold, H. Pon-Barry, and E. Walker, “Naturalness and rapport
in a pitch adaptive learning companion,” 2015 IEEE Workshop
on Automatic Speech Recognition and Understanding (ASRU, p.
103–110, 2015.

[4] S. E. Brennan and H. H. Clark, “Conceptual pacts and lexical
choice in conversation,” Journal of Experimental Psychology:
Learning, Memory, and Cognition, vol. 22, no. 6, p. 1482–1493,
1996.

[5] D. Reitter, J. Moore, and F. Keller, “Priming of syntactic rules
in task-oriented dialogue and spontaneous conversation,” in Pro-
ceedings of the 28th Annual Conference of the Cognitive Science
Society, R. Sun, Ed., Vancouver, 2006, p. 685–690.

[6] R. Levitan and J. Hirschberg, “Measuring acoustic-prosodic en-
trainment with respect to multiple levels and dimensions,” in Proc.
Interspeech 2011, 2011, pp. 3081–3084.
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