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Abstract

Coherence estimation between speech envelope and electroen-
cephalography (EEG) is a proven method in neural speech
tracking. This paper proposes an improved coherence estima-
tion algorithm which utilises phase sensitive multitaper cross-
spectral estimation. Estimated EEG coherence differences be-
tween attended and ignored speech envelopes for a hearing im-
paired (HI) population are evaluated and compared. Testing was
made on 31 HI subjects and showed significant coherence dif-
ferences for grand averages over the delta, theta, and alpha EEG
bands. Significance of increased coherence for attended speech
was stronger for the new method compared to the traditional
method. The new method of estimating EEG coherence, im-
proves statistical detection performance and enables more rig-
orous data-based hypothesis-testing results.

Index Terms: Selective Auditory Attention, EEG, Coherence
Estimation, Multitaper, Neural Speech Tracking.

1. Introduction

In a number of real-life listening scenarios, a listener has to
‘track’ and understand an attended speech in the presence of
multiple competing talkers. This constitutes the cocktail party
problem [1], effectively solved by listeners with normal hearing
(NH) in everyday life, and less effectively in listeners with hear-
ing impairment (HI) [2]. For this reason, algorithms to mea-
sure neural tracking (NT) of natural running speech from elec-
troencephalography (EEG) [3] have been developed in order to
understand how attention and hearing are related. These algo-
rithms are especially important for HI listeners that are in need
of intuitive and adaptive hearing aids (HAs) [4-7]. One practi-
cal way to understand how the neural activity tracks speech is
by relating the neural responses to the speech signals, for exam-
ple using linear filters.

Implementation of linear filter estimation assumes the
speech as an input signal to the process in the brain and viewing
EEG as the output signal [8,9]. Although there are a plethora
of error sources, a transfer function that maps speech features
to EEG can then be estimated. This can then be used to decode
auditory attention. Success with linear filters, from speech en-
velopes to recorded EEG signals, has been shown [3,4,6,10,11].
Alternatively, one can use coherence measures [12] to detect
linear, or first order, correlation of input speech and output EEG.

One version of coherence estimators is the magnitude
squared coherence (MSC) function, defined as the squared
cross-spectrum normalised with the auto-spectra of the two
channels. Finding reliable estimates of the MSC are impor-
tant in many applications, such as signal detection, frequency
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function estimation, time delay estimation and system identifi-
cation [13]. MSC has been studied for many years where the
Welch method and the Thomson multitapers commonly are ap-
plied [14-16].

Previously, Viswanathan et al. [17] showed statistically sig-
nificant differences in coherence values between attended and
ignored speech stream for NH listeners. Using a Thomson mul-
titaper based coherence estimator over multiple data segments,
they showed strong statistical significance for attended and ig-
nored speech difference, in the delta, theta and alpha EEG spec-
tral bands. As the amount of noise in EEG data is substantially
large, the coherence estimates are often very small between the
input speech envelopes and EEG, which sometimes makes de-
tection of coherence to become difficult [18, 19].

This work employs a similar coherence estimation algo-
rithm as in [17], with the difference that the proposed method
utilises phase information in the tapers. As such, better coher-
ence detection is obtained, improving on the ability to distin-
guish differences in attended to ignored speech for HI listeners.
Simulations are presented to illustrate the difference in perfor-
mance of the coherence estimation method choices.

2. Research Data
2.1. Study Design

The experimental protocol was reviewed and approved by the
Science Ethics Committee for the Capital Region of Denmark
(journal no. H20028542). The EEG data utilized in this paper
have been used for different type of analyses in [7].

2.1.1. Participants

Participants comprised 31 experienced HA users with mild to
moderately severe sensorineural hearing loss (mean age 65.6).
All participants were native Danish speakers, with no history of
neurological disorders, dyslexia, or diabetes mellitus.

2.1.2. Stimuli and Recording

Stimuli were routed through a sound card (RME Hammer-
fall DSP multiface II, Audio AG, Germany) and were played
via 6 loudspeakers (Genelec 8040A; Genelec Oy, Finland) at
a 44,1kHz sampling rate. Loudspeakers were positioned at
+30° (T1-T2), +£112.5° (B1-B2) and +157.5° (B3-B4) az-
imuth, see Figure la. Attended and ignored stimuli (T1-T2)
were presented at 73 dB SPL each. Background noise (B1-B4)
was played at 70 dB SPL through 4 loudspeakers, with a mix of
4 talkers in each loudspeaker. The stimuli comprised 84 ~33 s-
long segments (trials) read by the same male and female talker.
Four trials were used for subject training and 80 trials used for
analysis. Each trial comprised a short period of silence, 5s of
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Figure 1: Schematic illustration of (a) the experimental set-up,
(b) trial paradigm design and (c) pre-processing pipeline.

background noise, 33 s of simultaneous stimuli from all speak-
ers followed by a two-choice question about the content of the
attended speech, as illustrated in Figure 1b. EEG data were ac-
quired at a sampling rate of 1024 Hz with a BioSemi ActiveTwo
64-channel EEG recording system in 10-20 layout. A more
detailed description of the experimental design is provided in
[6,7].

2.2. EEG Preprocessing

EEG signals were referenced to the average of mastoid chan-
nels, bandpass filtered between 0.5 and 70 Hz and notch fil-
tered at 50 Hz to remove line noise. EEG was downsampled to
256 Hz, to avoid unnecessary temporal computation. Bad chan-
nels, on average 0.87 channels per subject, were removed and
interpolated from remaining channels. Independent component
analysis [20,21] was performed, manually removing clear noise
components such as eye artefacts, muscle activity, heart-beats
and single channel noise, with an average of 17 components re-
moved per subject.

Speech signals of the attended and ignored talkers were
low-pass filtered at 128 Hz and downsampled to 256 Hz, and
subsequently envelopes of the speech were calculated as the ab-
solute value of the analytical version of the speech signals. The
pre-processing steps are summarised in Figure 1c.

3. Coherence Estimation

The measure of spectral coherence is common for detecting and
analysing linear systems, i.e., systems where a sampled output
signal y(n) is a linear filtering of an input signal z(n). The
measure can have various forms, here as the MSC defined as
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where X ; and Y} ; are the discrete Fourier transforms (DFT)
of data segment [ tapered by the k:th window and x is defin-
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ing complex conjugate. The windows are selected by design
to reduce the variance of the spectral estimator. In the present
study, Thomsons method is used, as these multitapers maximise
the narrowband power of the spectral estimate as well as reduce
estimation variance [16].

Traditionally, in the field, the multitaper cross-spectrum in
the numerator of Eq. (1) has been estimated as
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with the absolute value inside the sum of the multitaper cross-
spectra. In this contribution, we instead propose an estimate
according to
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where the absolute value now is outside the multitaper cross-
spectrum. The MSC method utilising cross-spectra as Eq. (4) is
referred to as the traditional method where the proposed tech-
nique in Eq. (5) is named the new method. MSC estimation es-
sentially sums the complex cross-spectra over tapers and data
segments and then normalises, which magnifies components
that are phase-locked between the sub-estimates and strikes out
the components that are not. The traditional method removes
the phase component in each cross-spectrum before averaging
together where the new method actually takes the phase into
account, thereby utilising all available information.

4. Simulation Evaluation

In this section the new method will be compared to the tra-
ditional method for simulated signals. Two evaluations are
made, where the simulation design and parameters are chosen to
closely relate to the application of the use of the MSC in selec-
tive auditory attention tasks. The first evaluation compares de-
tection of coherence, for two cases: coupling and no-coupling.
The second evaluation illustrates a shifting phenomenon of the
coherence peaks for additive 1/ f-noise, often used as a simu-
lated low-frequency component of EEG [22].

4.1. Signal Detection Comparison

MSC estimates are generated for coupling versus no-coupling,
where the coupling case is when a signal is present both in in-
put and output signal. The no-coupling case is when the signal
is present in the input signal but not in the output signal. All
input and output signals are perturbed by uncorrelated additive
white noise. The distributions of MSC estimates are evaluated
for both the new method and the traditional method, and both
coupling scenarios.

The simulation entails generating the input signal s(n) as
unitary-powered white noise band-passed in the region 8-10 Hz.
The input is disturbed by white noise, e (n), of varying stan-
dard deviation o, € [2,5,10], giving (n) = s(n) + ozez(n).
The outputs for the coupling and no-coupling scenarios are de-
fined as y(n) = s(n) + oyey(n) and, y(n) = oyey(n) re-
spectively, where e, (n) is white uncorrelated noise of different
standard deviations o, € [0,0.1,0.2,...,10]. For each MSC
estimate 33 s of data is used with L = 33 and segment length
256. The sampling frequency is fs = 256, the FFT-length is
256 and the number of multitapers is X = 10. Simulations
were performed 10000 times, and the two MSC measures were
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Figure 2: (a) Area under curve for both method in our simu-
lation. (b) True positive rate at 5% false positive rate for both
method in our simulation.

estimated using the mean value of the frequency bins entailed
in the signal band 8-10 Hz.

A receiver operating characteristic (ROC) curve for the sim-
ulated empirical distributions of MSC estimates of coupling and
no-coupling scenarios. The area under curve (AUC) is shown
in Figure 2a and a second measure, the true positive rate (TPR)
at the 5% false positive rate (FPR) is presented in 2b. The
two measures of detection performance are very consistent with
each other, showing similar trajectories over noise power lev-
els. However, the two methods differ in performances. Firstly,
a consistent improvement over all combinations of noise pow-
ers o, and oy utilising the new method compared to the tradi-
tional method can be observed. Secondly, an observation can
be made that the difference between the two methods is larger
when there are significant levels of noise in both channels com-
pared to when a clean observation of the input signal can be
made.

4.2. The Effect of EEG-Like Pink Noise

In reality, EEG data do not conform to the noise assumption of
the simulation presented in previous section. Output noise in
this case is not well-defined white noise, but consists of other
cortical processes, conduction noise and measurement noise
from a multitude of sources. One effect that is observable when
changing the nature of the noise processes obstructing the sys-
tem, is shown by changing the noise colour to an EEG-like 1/ f-
noise (pink noise).

In Figure 3, the estimated coherence expectation of a cou-
pling (left) and no-coupling scenario (right) is shown. An iden-
tical simulation as in the previous section was performed, with
two differences. The first difference is that z(n) s(n),
without noise disturbance. The second difference is that e, (n)
now is 1/f-noise to emulate the observed low-frequency noise of
EEG data. The pink noise was simulated by Fourier transform-
ing generated white noise, multiplying with the 1/ f-spectra,
then inverse transforming and ensuring zero mean and standard
deviation one. The estimated MSC expectations for the no-
coupling and coupling cases were then evaluated at all positive
frequencies. Observable in Figure 3, the peaks of the coher-
ence do not lie in the true spectral band of the signal but are
instead shifted to higher frequencies, which is due to spectral
leakage and the slanted power spectrum of noise. This risks
interpretation errors in identifying spectral locations of compo-
nents correlated in channels. Accounting for this is beyond the
scope of this paper, but worthy of focus in future work. Addi-
tionally, one can also see that there is a larger (biased) peak in
the coherence spectra in the no-coupling case for the traditional
method compared to the new method. The coherence spectra
should ideally be flat, which indicates that the new method is
preferable to apply.
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Figure 3: Expectation of coherence estimation for bandpass fil-
tered white noise in the presence of pink noise in (a) coupling
and (b) no-coupling scenario. One can clearly see that the spec-
tral position of the peak is shifted in a positive direction in the
coupling case in the left figure. The right figure shows the bi-
ases for the methods of interest in the no-coupling case, where
there should ideally be no peak.

5. Real Data Evaluation

Coherence between speech envelopes and EEG responses gives
a measure of to what extent the cortical responses can be lin-
early predicted from sound. In the experimental setup de-
scribed in Section 2.1 one seeks to know whether it is possible
to see significant differences in speech-EEG coherences when
the speech stream is attended xq++(n) compared to when it is
ignored x;4n(n) (in a positive direction for attended speech),
given the set of all data spanning trials and subjects. For each
trial, MSC is estimated with the same parameters as in the sim-
ulation of section 4.1, but with twice the FFT-length. Speech-
EEG coherence estimates are made for multiple EEG frequency
bands, taking the mean over all channels as well as over the
delta (1 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 12 Hz), beta (12
- 30) and gamma band (32 - 128 Hz) respectively. A hypothe-
sis test can be constructed to estimate this difference. In order
for the coherence, averaged in a frequency band B, between
attended speech envelopes (C2,) and EEG to be larger than
for the unattended speech envelopes (C’fm) and EEG the fol-
lowing inequality should be shown for the stochastic variables
E[CE,] > E[CE,]. An equivalent statement is to look at
E[D] = E[CE, — C‘fm] and showing this to be positive. This
analysis can be done for each EEG channel separately, or for the
average coherence over all EEG channels compared to speech
envelopes. Associated hypotheses for the test can be formed as

Hy: Attended speech coherence estimates are equal or
smaller compared to ignored speech coherence estimates,
E[D] <o0.

Hi: Attended speech coherence estimates are larger than
ignored speech coherence estimates, E[D] > 0.
A null distribution of D is approximated through bootstrap sam-
pling by firstly randomising the sign of D for each trial and sub-
ject and secondly taking the mean over all trials and subjects
[17,23]. This procedure is repeated 500 000 times to approxi-
mate the underlying distribution of DgO‘ The p-values of each

sampled D go estimate are calculated through the approximated
null distributions. The p-value comparison is proofed against
multiple comparisons by using Boneferroni correction [24].
Figure 4 shows the grand average of coherence estimates
over all channels, experiment trials and subjects, in an estimated
95% confidence interval, for attended and ignored speech en-
velopes. Overall, for lower frequencies the coupling is stronger
between attended speech envelopes and EEG responses, com-
pared to the ignored speech, using both methods. However, the
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Figure 4: The grand average coherence estimates, over EEG
channels, trials and subjects, calculated with (a) the traditional
method and (b) the new method.

40

new method is sustantially lower, perhaps indicating a bias ef-
fect in the estimate using the traditional method.

Coherence was also estimated, taking the mean over all
channels, and over EEG bands. The null hypothesis was tested
for observed coherence difference between attended and ig-
nored speech envelope coherence, as described in the beginning
of section 5. This resulted in a series of p-values for each EEG-
band, shown in Figure 5 for both the traditional method and new
method. First, for HI listeners, very similar conclusions regard-
ing for which EEG-bands the rejection of the null hypothesis
can be made, compared to an NH population, for example in
[17]. The delta, theta and alpha band coherence estimators show
a significant difference in attended and ignored coherence, with
a 95% (Boneferroni corrected) confidence.

Both methods capture consistent patterns of significant
EEG bands. However, the p-values are consistently lower for
the new method compared to the traditional method. These re-
sults reflect the behaviour similar to the simulation results of
section 4.1. In this case, both methods are good enough for re-
liable statistical conclusions. However, one would potentially
need less trials with use of the new method to make conclusions
about the coherence difference.
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Figure 5: Given the null hypothesis of C5, < an, the fig-
ure shows p-values of measured grand average coherence over
all trials and subjects, calculated for each EEG band. Coher-
ence estimation using the new method and using the traditional
method is shown in blue and red respectively. The sign < de-
notes p-values estimated lower than the limit 1075,

A similar p-value test is made for each frequency bin of the
coherence estimates of the new method, instead of a mean of
entire EEG-bands, for which the p-values are shown in Figure 6.
Although the Bonferroni correction is a lot more stringent and
a variance reducing mean is not performed before hypothesis
testing, certain bins still show significant differences in attended
and ignored speech coherence. These bins range 5-10 Hz.
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Figure 6: Given the null hypothesis of CE, < Cign, the figure
shows p-values of measured grand average coherence over all
trials and subjects, calculated for each frequency. Coherence
estimation using new method and using the traditional method
is shown in blue and red respectively. The sign < denotes p-
values estimated lower than the limit 107° and is above the

data point for blue stars and below for red.

Lastly, to identify the important channels for EEG-based
speech tracking, a hypothesis test was also performed for each
channel, averaging the coherence in the delta, theta, and alpha
band. The significant channels can be seen in Figure 7, which
gives possibility to redo steps in previous coherence p-value
testing a better optimal frequency identification. One should
note that significant channels may contain redundant informa-
tion compared to each other, which means all of them may not
be needed in a neural speech tracking application.
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Figure 7: P-values of mean coherence difference over channels,
of which were made averaging frequency bins within the delta,
theta and alpha band. The sign < denotes p-values estimated
lower than the limit 10~ 5.

6. Conclusions

The new method of estimating coherence proposed in this study,
utilising all available phase-information, has been shown to im-
prove statistical detection ability of coherence through simula-
tion. Investigating a real data application within auditory atten-
tion tracking, coherence estimates between speech envelope and
EEG has proven to significantly differ between using attended
speech envelopes and ignored speech envelopes as inputs, and
the new method has an increased estimated difference compared
to the traditional method. Specifically, this was shown for a
hearing impaired population of 31 subjects. Statistical testing
showed significant differences for the delta, theta, and alpha
EEG bands. These results are consistent with previous findings
of important EEG bands for a normal hearing population. As a
future work, we aim to improve spectral shifting bias in realistic
noise scenarios, with the ultimate goal to be able to evaluate and
further advance hearing technology.
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