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Abstract

Speech super-resolution/Bandwidth Extension (BWE) can im-
prove downstream tasks like Automatic Speaker Verification
(ASV). We introduce a simple novel technique called Self-
FiLM to inject self-supervision information in existing BWE
models via Feature-wise Linear Modulation. We hypothesize
that such information contains domain/environment informa-
tion, which can help BWE deliver zero-shot generalization.
Self-FiLM improves conditional GAN-based BWE by 18%
(relative) in Equal Error Rate and 8.5% in minimum Decision
Cost Function on the x-vector & Probabilistic Linear Discrimi-
nant Analysis based state-of-the-art ASV system on SRE21 test.
We further improve it by using deep feature losses from time-
domain models and re-training data2vec 2.0 models on natural-
istic wideband (VoxCeleb) and telephone data (SRE Superset
etc.). Lastly, we integrate Self-FiLM in CycleGAN to obtain
a completely unsupervised solution that matches the CGAN-
based semi-supervised performance.

Index Terms: Self-supervision, FiLM conditioning, condi-
tional GAN, super-resolution, CycleGAN, data2vec 2.0

1. Introduction

Deep learning has incredibly advanced speech applications like
source separation, speech enhancement, and Bandwidth Exten-
sion (BWE) [1]. Such inverse problems involve representation
learning and feature mapping between domains. The rise of
Self-Supervised Learning (SSL) has called for a joint investiga-
tion of SSL and BWE (our application of interest). Conditional
variants of Generative Adversarial Network (GAN) [1], and dif-
fusion model have shown great promise [2] for BWE. We aim
to bridge the gap between SSL and deep generative models by
learning to condition GAN with SSL representations.

SoundFilter [3] is a one-shot source separation model
which uses a short target utterance as conditioning using
Feature-wise Linear Modulation (FiLM) [4]. In [5], authors
use a pre-trained WavLLM [6] SSL model (with additional fine-
tuning step) as another input to speech enhancement network.
TUNet [7] uses temporal FiLM-based UNet architecture for
BWE and simple self-supervision losses but does not use any
conditioning information. [8] pursues mixed-bandwidth Auto-
matic Speech Recognition (ASR) by doing channel-aware pre-
training in a HUBERT [9]-inspired SSL model.

We develop SSL-conditioned BWE models to assist tele-
phony ASV (downstream task) [10], which prior work still
needs to address. Considering SSL representation as a proxy for
Acoustic Environment Embedding (AEE), we explore the zero-
shot adaptation capability of our system during inference using
AEE information. We choose to condition the hidden layers of
the BWE model and not provide SSL embedding sequence as an

additional input (e.g., to the first layer) to avoid re-designing the
BWE-ASYV pipeline. Also, we require continuous target predic-
tion for BWE, and thus we avoid directly mapping SSL embed-
dings to desired temporal output. With our proposed scheme
Self-FiLM, we first establish the utility of various pre-trained
SSL models with CGAN. We also visualize the conditioning in-
formation by speaker, language, and domain label as explored
similarly in [11]. Building on an efficient SSL model such as
data2vec 2.0, we explore in-domain training as done in Robust
wav2vec 2.0 [12]. We also study Self-FiLM with Deep feature
Loss (DFL) for speaker preservation and CycleGAN for unsu-
pervised learning, which is unavailable in prior work.

As our main contributions, we 1) propose a simple con-
ditioning technique to utilize self-supervised representations in
bandwidth extension to provide test acoustic environment infor-
mation, 2) visualize the proposed conditioning information by
different domain labels, 3) study the effect of using in-domain
SSL models by re-training data2vec 2.0 on naturalistic mixed-
bandwidth data, 4) demonstrate the compatibility of Self-FiLM
with CycleGAN, and deep feature losses.

2. Background
2.1. Self-supervised learning models

We extract 256-D frame-level representations from primarily
pre-trained small/BASE versions of 16KHz SSL audio models.
since they capture low as well as high-level information [11].
wav2vec 2.0 [13]: This model is trained with a contrastive
loss defined over jointly learned quantization of latent repre-
sentations. The feature encoder consists of seven convolu-
tional blocks in the BASE version (95M parameters). The
context/transformer network has 12 layers, 768 model dimen-
sions, 3072 Point-wise Feed-Forward Network (FFN) inner di-
mension, eight attention heads, and relative positional encod-
ing. The training data is Librispeech [14] which consists of
960h of read speech. To test multi-lingual generalization on our
test sets, we also experiment with Robust Large wav2vec 2.0
(0.3B parameters), which is trained on Libri-light, Common-
Voice, Switchboard, and Fisher [12].

XLSR-53 [15]: This is another multi-lingual counterpart of
wav2vec 2.0 (BASE) trained with 53 languages from Com-
monVoice [16] (read speech), BABEL [17] (conversational
telephone speech), and Multi-Lingual Librispeech (MLS) [18]
(read speech from audiobooks).

WavLM [6]: This model jointly accomplishes masked speech
target prediction (like HuBERT [9]) and denoising. The denois-
ing capability makes it more conducive to non-ASR tasks. The
BASE model (94.7M parameters) is trained on Librispeech and
has similar architecture to wav2vec 2.0.

Data2vec 2.0 [19]: This BASE model (93.8M parameters) is
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Figure 1: lllustration of the Self-FiLM framework for Conditional GAN bandwidth extension. The generator and discriminator receive
information from the self-supervised model after pooling and FiLM operation. An optional pre-extension block is present before the
SSL model. An auxiliary network is used for deriving speaker-preserving (deep feature) loss.

derived from a non-contrastive student-teacher self-distillation
wav2vec 2.0 formulation, where the teacher follows a running
exponential average of the student in the learning process.

2.2. Embedding pooling methods

mean, mean+std: Here, mean refers to simple average pool-
ing across time dimension, while mean+std (statistics pooling)
refers to the concatenation of mean and standard deviation.
LDE [20]: In Learnable Dictionary Encoding (LDE), we rep-
resentations (s, ..., sT) are assumed to be in C clusters. We
learn a dictionary with one center per cluster. Details for soft
cluster assignment and final embedding are in [21].
ScaleAtt: We use a modified form of scaled dot-product atten-
tion [22], which we term as ScaleAtt. We use multiple heads
(H = 4) like in the Multi-Head Attention (MHA) [23] formu-
lation. For a single head, attention outputs are

ScaleAtt = softmax(qKT)V K = fi(x),V = fu(x). (1)

Vi e o

q is a learnable query vector (per each head), which makes the
formulation non self-attentive. K and V" are key and value ma-
trices obtained through f;, and f, projection linear layers (out-
put dimensions are d, = d, = 256). H parallel attention
modules are utilized, and outputs are concatenated to form final
dmodel dimension output, where dmodel = Hdy.

2.3. Speaker embedding networks

Light-ResNet34 [24]: LResNet [24] is a smaller ResNet-based
x-vector architecture with 256-D embedding, 80-D Log-Mel
FilterBank (LMFB) input features, and 5.6M parameters. It has
four residual blocks whose outputs are used for DFL.
RawNet3 [25]: We utilize this 16.2M parameter time-domain
model as authors showed it compatible with self-supervised
techniques [25]. The first layer is a parametric analytic filter-
bank (256 filters) followed by three residual backbone blocks
(1024 filters each). For DFL, we use the outputs of all convolu-
tional blocks before the pooling layer.

2.4. Generative Adversarial Networks

For BWE model, we use Generative Adversarial Networks. We
primarily focus on supervised GANs (Conditional GAN). Su-
pervised Conditional GAN (CGAN) [26] learns to sample from
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conditional distribution (p 4| ) where A and B are two domains
(pa, ps resp.). Generator G4, p generates fake sample while
discriminator D p distinguishes between real and fake via

(€3

max min Lcgan, where Lcgan = Ladv + AsupLoup-
Ga-B DB

Lagv and Lgp (weighted by Agp) are adversarial and supervised
loss respectively:

Laav(a,) =Eapp, 5 [(D(b))* + (1 = D(G(a))?],
Liup(,b) =Fanp s popp [[b — Gap(@)[n]-

3
(C)]

Here, L4y is based on Least-squares GAN [27]. a and b are
real paired samples from domains A and B respectively.
CycleGAN is an unpaired model using two tied CGANSs:
max mig Leye-Gan , Where

(5)
GA—-B,98BA DA, Dp

[/cyc-GAN = EadV,AHB + EadV,BﬁA + )\cyc[/cyc + )\id»cid~ (6)

Adversarial losses are defined like in Eq. 3. a and b are real
unpaired samples. Ay and Aig are the weights for cycle and
identity loss which are used for semantic consistency and regu-
larization, respectively:

Leye = EBanpabappllla = Ga(Ga-5(a))|1]
+ Eanpabrpp[lb = Gas5(G—a(P))l1], ™
Lia = Eapopa pllla—Go-a(@li + b= Gasp(b)[h].

2.5. Generator and Discriminator architectures

For Generator, we use Conv-TasNet [28] (1.6M parameters). It
consists of encoder, separator, and decoder. The separator has
eight CNN layers that compute a mask. For separator, the ker-
nel size is 16, the stride is 8, and channels increase from 128
to 1024 exponentially with a dilation of 2. For CGAN discrim-
inator, we use Parallel WaveGAN (0.16M parameters) [29]. It
is a 10-layer 1-D CNN with a kernel of 3, channels of 80, and
linearly increasing dilation from the second to the ninth layer
(from one to eight). For CycleGAN discriminator, we use multi-
period HiFIGAN (7M parameters) [30]. Each of the four sub-
discriminator consists of six 1-D CNN layers with kernel size
as 5, stride as 3, output channels as (4,16,64,256,1024,1).



Table 1: Effect of different pooling methods and SSL model in Self-FiLM on ASV metrics: EER/minDCF-formatted (lower the better).
We use pre-trained SSL and do not investigate pre-extension block and deep feature loss (Fig. 1). * denotes identical systems.

CGAN BWE type CGAN Sup loss  G+D params (M) SRE16-YUE-eval40 SRE-CTS-superset-dev  SRE21-audio-eval
No BWE - - 7.12/0.376 5.36/0.216 17.12/0.644
BWE without self-FiLM 0.0048 1.7 5.68/0.332 4.08/0.180 15.81/0.618
Pooling type (SSL = wav2vec 2.0)

mean 0.0049 5.7 5.41/0.306 4.05/0.180 15.11/0.610
mean-+std 0.0051 7.6 7.09/0.335 4.01/0.178 13.84/0.586
LDE 0.0052 18.2 5.07/0.298 3.86/0.175 14.33/0.593
ScaleAtt (*) 0.0052 393 5.22/0.303 4.03/0.181 14.09/0.591
SSL type (Pooling = ScaleAtt)

wav2vec 2.0 (¥) 0.0052 393 5.22/0.303 4.03/0.181 14.09/0.591
Robust Large wav2vec 2.0 0.0035 49.2 5.44/0.307 4.00/0.177 15.42/0.614
XLSR-53 0.0035 49.2 5.52/0.306 3.96/0.177 15.32/0.611
WavLM 0.0036 393 5.51/0.302 3.98/0.177 15.05/0.603
data2vec 2.0 0.0035 393 5.48/0.308 3.94/0.175 16.07/0.621

Algorithm 1 Steps in Self-FiLM (for CGAN BWE)

1. Pre-train an x-vector model and freeze it.

2. Pre-train an SSL model and freeze it.

3. (optional) Pre-train a simple BWE model (“prior BWE
model” in Fig. 1) using regression or GAN loss and freeze it.
4. Arrange the above models per Fig. 1 configuration. Use x-
vector as the auxiliary model in deep feature loss.

5. Using Eq. 3, train CGAN (“main BWE model”) along with
pooling and FiLM layers corresponding to G and D.

6. During inference, discard the discriminator and feed the out-
put of the “main BWE model” to the downstream ASV pipeline.

2.6. Feature-wise Linear Modulation

For data index ¢ and channel index c, Feature-wise Linear Mod-
ulation (FiILM) operation/layer [4] adaptively modulates the ac-
tivations Fj . of a Deep Neural Network (DNN) with a condi-
tioning vector s;. It learns linear layers (fe, h., gc) per channel.
After introducing FiILM strength hyper-parameter « € [0, 1],

Yire = fe(ge(5i)); Bie = he(ge(si)), )
FILM(F’L,(') - Fi,c + a(’yi,cFi,c + 61’,(: - Fi,c)-
Output dimension of f. and h. equals F. . channel dimension.
Dimension of s. depends on the pooling function, so we intro-
duce g. linear layer with a fixed output dimension of 256.

3. Self-FiLM

In Self-FiLM, we condition the layers of a DNN with the self-
supervised representations of the input signal itself. It pro-
vides an alternate rich view of the signal. Our flexible frame-
work allows clean integration of SSL models with existing
pipelines and avoids system re-design. The test signal may ben-
efit from SSL conditioning (a proxy for acoustic environment
embedding) for zero-shot generalization during inference. In
Fig. 1, we show a diagram of Self-FiLM on Conditional GAN
(both generator and discriminator). Narrowband signal z,, is
input to an optional preliminary BWE model (pre-extension)
for improved compatibility with the (usually) wideband-trained
SSL model. The self-supervised representations are pooled
(Sec. 2.2) and FiLM-ed to all convolutional layers of the gener-
ator and the discriminator. We use the modified FILM proposed
in Eq. 8. Our initial methodology involves leveraging a pre-
trained publicly available SSL model to obtain a sequence of
self-supervised embeddings (s1, ..., sr) where T is the num-
ber of such vectors. We use the last layer of SSL models for
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simplicity. For CGAN optimization, we also explore using an
auxiliary speaker embedding network for deep feature loss [31]
to preserve speaker identity during BWE. Algorithm 1 summa-
rizes the steps. Self-FiLM can be seen as top-down condition-
ing, while DFL can be seen as bottom-up conditioning. Self-
FiLM CGAN is thus a semi-supervised model, while the Cycle-
GAN version is entirely unsupervised. Our preliminary work on
applying Self-FiLM to x-vector led to over-fitting on in-domain
data, so we defer that to future work.

4. Experimental Setup

As stated in Sec. 1, we aim to improve ASV performance on
telephone test sets using 16KHz SSL models. Richer wideband
training data is available to train x-vector (LResNet, RawNet3)
and SSL models. X-vector and Probabilistic Linear Discrim-
inant Analysis (PLDA) are trained on VoxCeleb [32], nar-
rowband VoxCeleb (VoxCeleb_narrow), and Speaker Recogni-
tion Evaluation (SRE) telephone data (SRE_telephone). Vox-
Celeb (1&2 combined) contains 2700+ hrs of audio from 7365
speakers in the wild. VoxCeleb_narrow is created by remov-
ing upperband information (4-8KHz). SRE_telephone (11k h,
6909 speakers) is created by combining SRE Superset [33]
and SRE16 eval data [10] which includes Tagalog and Can-
tonese (YUE) languages. In GAN, G and D are initialized
randomly and VoxCeleb_narrow and VoxCeleb are used for do-
mains A and B data. We test on three sets that cover a variety
of languages, and acoustic environments: SRE!6-YUE-eval40
(40% speakers (40) from evaluation set of SRE16 Cantonese),
SRE-CTS-superset-dev (99 speakers from CMN (Mandarin) and
YUE (Cantonese) languages, 6M trials), and SRE2I-audio-
eval [10,34] (contains various languages and domains, 22M tri-
als). Test set details may be found in previous works [10, 34].
Note that the narrowband signals are also resampled from na-
tive 8KHz to 16KHz. During testing, BWE is applied to all
test signals (including the wideband signals of SRE21) and
PLDA narrowband portion. LResNet34, RawNet3 are ob-
tained pre-trained from prior works [24,25] on VoxCeleb, Vox-
Celeb_narrow, and SRE_telephone with Additive Angular Mar-
gin (AAM) softmax (margin=0.3) speaker classification loss
and data augmentation (MUSAN noises, Aachen Room Im-
pulse Response reverberations) [21]. Training configurations
for GANs are obtained from [10]. For ASV evaluation, we
use Equal Error Rate (EER) and minimum Decision Cost Func-
tion (minDCF) metrics (with a target speaker prior probabil-
ity of 0.05) which capture false positive and false negatives.
LResNet-PLDA pipeline is used for scoring [24]. All models
are trained with PyTorch with 4x24GiB GPUs.
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Figure 2: t-SNE visualization of FiLM activations from the first layer of CGAN generator using SRE21 test data.

5. Results
5.1. Exploring pooling methods and SSL models

Here, we show the effectiveness of Self-FiLM under a wide va-
riety of pooling methods and SSL model choices (Table 1). First
row contains the baseline results without BWE. With a CGAN
BWE, we can see drastic improvement across all test sets and
obtain a supervision loss value of 0.0048. This recreates re-
sults from previous studies [1,10] and establishes a strong base-
line for further experiments as the CGAN has been tuned ex-
tensively. Next, we investigate pooling methods using wav2vec
2.0 Self-FiLM. Here, we see higher improvements with com-
plex methods like mean+std, LDE, and ScaleAtt. Note that
BASE wav2vec 2.0 does not improve CGAN supervision loss.
Then, we investigate stronger SSL models with ScaleAtt pool-
ing, which all improve the baseline. We note that the results do
not necessarily improve consistently with larger models as cor-
roborated by prior studies [5S]. However, lower supervision loss
and the observed improved GAN training reveal the potential of
such models. We visualize that Self-FiLM can extract discrim-
inative information about the speaker, language, and domain
from SSL models (Fig. 2). We apply t-SNE on FiLM activations
from the first layer of the CGAN’s generator. In Fig. 2(a), we
plot recordings of five random speakers and observe clustering
by speaker identity. In Fig. 2(b), we fix a speaker and discover
clustering by the languages spoken. In Fig. 2(c), we observe
clustering by telephone (CTS) and wideband (AFV) domains.

Table 2: Investigating role of in-domain SSL model, o, pre-
extension, deep feature supervision loss in Self-FiLM CGAN.

BWE type SRE16-YUE  SRE-CTS SRE21
No BWE 7.12/0.376  536/0.216 17.12/0.644
Training data for data2vec 2.0

Librispeech 5.48/0.308 3.94/0.175 16.07/0.621
VoxCeleb 5.52/0.305 3.98/0.176 15.09/0.604
SRE_telephone 540/0.307 3.97/0.176  15.45/0.608
SRE _telephone+VoxCeleb8k 5.56/0.308 3.99/0.177 14.81/0.598
VoxCeleb data2vec 2.0 5.52/0.305 3.98/0.176  15.09/0.604
+a=0.5 559/0316  4.02/0.178 14.59/0.595
+ pre-extension 54370303 3.95/0.176 15.57/0.612
+ feature-domain DFL 5.51/0305 3.97/0.176  15.01/0.605
+ time-domain DFL 542/0.301 4.00/0.178 14.07/0.589
+ a=0.5+time DFL 540/0.305 4.01/0.178 14.08 / 0.588
+ a=0.5+time DFL+pre-extend ~ 5.28/0.308  3.98/0.180 14.20/0.591

5.2. Effect of in-domain training data for data2vec 2.0,
FiLM strength «, pre-extension and deep feature loss

We choose data2vec2.0 for further analysis (Table 2) as it has
the highest training efficiency [19]. Test set names are shortened
for brevity. First, we train data2vec 2.0 on different datasets.
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We find training on naturalistic wideband and narrowband data
to be better than out-of-domain (OOD) read speech corpus Lib-
rispeech. We get even better results than Robust wav2vec 2.0
(Table 1). We combined VoxCeleb_narrow and SRE_telephone
to observe great performance, but it led to unstable GANs for
further experiments with DFL. This is perhaps because the ex-
isting training configuration of data2vec 2.0 is optimized for
wideband data. Using VoxCeleb data2vec 2.0, we conduct fur-
ther experiments. Using &« = 0.5 on CGAN gives slight im-
provement, while bandwidth pre-extension gives slightly incon-
sistent gains. With deep feature loss in CGAN training, we
observe significant improvements, especially with the tempo-
ral model (RawNet3), as CGAN operates in the time domain.
Finally, we try combinations of the above experiments. We ob-
serve synergy in different test sets which can be advantageous
for ASV fusion [34].

5.3. Application to CycleGAN-based bandwidth extension

Here, we prove the compatibility of unsupervised BWE mod-
els based on CycleGAN with Self-FiLM. In Table 3, we
note the benefit of using (default) Librispeech and VoxCeleb
data2vec2.0. Performance on SRE21 is greatly improved while
other test sets benefit from RawNet3 based DFL (in cycle and
identity loss). On SRE21, there is degradation in the last row
perhaps due to 1) usage of CGAN hyper-parameter configu-
ration or 2) using identical RawNet3 for the other generator,
which learns the reverse mapping. In the future, we can uti-
lize a larger computational budget to explore ideal CycleGAN
hyper-parameters and training data configurations. We can also
explore joint training of CycleGAN and SSL in the future.

Table 3: Integration of unsupervised BWE with Self-FiLM

BWE type SRE16-YUE  SRE-CTS SRE21

No BWE 7.12/0.376  5.36/0.216 17.12/0.644
BWE w/o Self-FiLM 4.95/0.294 399/0.176 17.58/0.681
Librispeech Self-FILM ~ 4.97/0.297  4.16/0.183  15.96/0.637
VoxCeleb Self-FiLM 547/0.317 452/0.197 14.02/0.609
+ time-domain DFL 5.09/0.290 3.98/0.180 16.75/0.637

6. Conclusion

We proposed Self-FiLM to condition a BWE model with the
self-supervised representation of the input signal itself. We
also corroborate the findings of Robust wav2vec 2.0 by train-
ing data2vec 2.0 on mixed-bandwidth in-domain data. In our
framework, we showed data2vec 2.0 is compatible with narrow-
band inputs, prior BWE (pre-extension) model, and deep feature
loss-based BWE. Finally, we extend Self-FiLM to combine Cy-
cleGAN and data2vec 2.0 for a fully unsupervised solution.
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