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Abstract
Voice activity detection (VAD) improves the performance of
speaker verification (SV) by preserving speech segments and at-
tenuating the effects of non-speech. However, this scheme is not
ideal: (1) it fails in noisy environments or multi-speaker conver-
sations; (2) it is trained based on inaccurate non-SV sensitive
labels. To address this, we propose a speaker verification-based
voice activity detection (SVVAD) framework that can adapt the
speech features according to which are most informative for
SV. To achieve this, we introduce a label-free training method
with triplet-like losses that completely avoids the performance
degradation of SV due to incorrect labeling. Extensive exper-
iments show that SVVAD significantly outperforms the base-
line in terms of equal error rate (EER) under conditions where
other speakers are mixed at different ratios. Moreover, the de-
cision boundaries reveal the importance of the different parts of
speech, which are largely consistent with human judgments.
Index Terms: voice activity detection, personal VAD, speaker
verification

1. Introduction
Voice activity detection (VAD) is a task that identifies whether
human speech is present or absent and is often used upstream
of other speech components such as automatic speech recog-
nition (ASR), speaker verification (SV), and speaker diarization
(SD). It aims to reduce the impact of non-speech on downstream
speech tasks and indirectly improve their performance. How-
ever, their goals are different. ASR and SD models need to effi-
ciently and accurately determine the boundary between speech
and non-speech to avoid missing content. SV is much more
complicated because there are more factors involved.

A typical VAD framework is considered to be a gating mod-
ule that makes a speech/non-speech decision for each frame.
Early studies focused on signal and statistical analysis and fea-
ture engineering [1, 2, 3, 4]. More recently, the use of con-
ventional deep learning methods, such as convolutional neu-
ral networks (CNN) and recurrent neural networks (RNN), has
shown significant improvements in detection performance at
low signal-to-noise ratios (SNR) [5, 6, 7]. Later, with the in-
troduction of the attention mechanism, the model can automati-
cally compare the characteristics of speech and noise within au-
dio to derive more accurate judgments [8, 9]. Some authors use
audiovisual information for VAD detection [10, 11]. Although
it improves the performance of SV by VAD to some extent,
these frameworks are insufficient because non-target speakers
are also identified and retained as speech labels. Since the SV
model uses only a single speaker for supervised training and
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does not consider multiple speakers, this leads to a significant
drop in verification performance. Therefore, a target speaker-
only VAD framework is required.

The personal VAD (PVAD) framework solves this problem
by extending the traditional VAD to recognize only the target
speaker part and ignore the non-target part. The feasibility
of PVAD has been demonstrated in several studies. The au-
thor of [12, 13] proposed and improved the concept of PVAD
to solve the problem of “always running” models on devices.
[14, 15] extends the PVAD to make it easier to use in ASR
applications. Moreover, the concept of PVAD has also been
applied to the task of speech enhancement as a secondary task
to improve the performance of separation [16, 17, 18]. How-
ever, these methods were not applicable to SV. Although the
author of [19, 20, 21, 22, 23] tries to employ SD to recognize
the speech of different speakers and then find the target speaker
by some rules, this type of framework is inefficient for down-
stream speech tasks due to the complexity of its process.

Traditional PVAD frameworks are inadequate for SV tasks
for several reasons: (1) Traditional PVAD models are trained
with frame-by-frame supervision based on human-assigned or
ASR forced alignment labels. However, not every frame pre-
dicted by the VAD model has a positive impact on the SV
model. In practice, segments identified as speech by tradi-
tional VAD are sometimes associated with low SNR or multiple
speakers talking simultaneously, which can severely degrade the
performance of SV; (2) These labels are usually set as hard la-
bels. However, soft labels are more suitable for SV scenarios
because different speech segments contribute differently; (3) In
SV, the VAD model faces a more complex situation and it will
be more challenging to take all factors into account.

To address these issues, we have made the following con-
tributions: (1) We propose a speaker verification-based voice
activity detection (SVVAD) framework, which manipulates
speech features using FiLM [24] according to their relevance
to the SV model; (2) We propose a novel label-free training
method that uses triplet-like losses to avoid the performance
degradation caused by inaccurate human labeling; (3) Extensive
experiments demonstrate that SVVAD achieves significant im-
provements over the baseline model in terms of equal error rate
(EER) under various conditions where other speakers are mixed
at different ratios, and that the model-generated VAD decision
boundary is highly consistent with human judgment.

2. Methodology
2.1. Recap of Personal VAD Model and Motivation

To show the advancement of our proposed voice activity de-
tection (VAD) framework, we need to discuss previous ap-
proaches. In the conventional personal VAD (PVAD) frame-

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

5067 10.21437/Interspeech.2023-2413



Speech

Feature

Embedding
Speaker

Personal VAD

Backbone

VAD decisionPVAD ModelInputsSpeech Signal

( )tst
tx

( )enr
v

( )s ×

tp

embedding transform

0 1

Sigmoid

( )enr
x...

Figure 1: The overview of PVAD framework.

work [12, 13, 19] (shown in Figure 1), first, a pre-trained
speaker verification (SV) model computes the speaker embed-
ding of the enrolled target user v(enr) from his/her recordings.
Then, the PVAD model takes this SV embedding as a priori and
the speech features of the audio to be tested x

(tst)
t as inputs to

make predictions pt at frame t. It can be trained using binary
cross entropy (BCE) loss. Eventually, this model is capable of
determining whether the frame contains the target speaker.

To further discuss this approach, there is an Assumption
of SV: (1) the enrolled speech is restricted to contain only
one speaker’s voice, and usually stored in the form of speaker
embeddings; (2) the tested audio includes not only the target
speaker’s speech, but also the non-target speaker’s speech and
non-speech. Consequently, the PVAD model is required to
identify whether the tested speech contains the target speaker’s
speech (tss) or its opposite (ntss) with its speaker embed-
ding v(enr), expressed as Equation 1. Where pt = [ptsst , pntsst ]

can be represented as a posteriori for two categories. x(tst) ∈
RT×F , v(enr) ∈ RE . E, F , T denote the embedding dimen-
sion, feature dimension and sequence length respectively.

pt = PVAD
(
x

(tst)
t ,v(enr)

)
(1)

Although the vanilla PVAD model can identify the target
speaker’s speech, it is originally designed for non-SV scenar-
ios. This framework is not optimal for SV because it is based
on the hypothesis that retaining only the target speaker’s speech
and ignoring other sounds can improve the performance of SV.
It is sub-optimal because not all speech of the target speaker
contributes positively to SV performance. Besides, this frame-
work relies heavily on accurate labels. Therefore, a more ad-
vanced VAD model for SV is needed that can account for more
complex situations.

2.2. Improving Personal VAD with Speaker Verification

In order to solve the issue described in § 2.1, we propose a
speaker verification-based voice activity detection (SVVAD)
framework with two novel approaches: (1) The FiLM layer [24]
is used to construct soft VAD decisions to modify the speech
features to automatically identify the most informative parts of
the SV model; (2) A label-free training method is introduced to
avoid considering overly complex situations.
Network Architecture for SVVAD Backbone: Figure 2 out-
lines the network architecture of the SVVAD backbone. It con-
sists of a PVAD backbone and a FiLM [24] backend. Seen from
the input side, this architecture has two branches that receive
the speech features to be tested x(tst) and the enrolled target
speaker embedding v(enr) inputs respectively. For the speech
feature branch, inspired by [13, 22, 25], we use Conformer [26]
(with Nconf encoder layers) as the speech feature extractor be-
cause of its ability to distinguish the features of different speak-
ers more efficiently. To ensure consistency in the time dimen-
sion, we removed the subsampling operation from the original
Conformer header. In this way, both the input x(tst)

t and out-
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Figure 2: The network architecture of SVVAD backbone.

put x(conf)
t have the same dimension RT×F . For the speaker

embedding branch, first, a pre-trained SV model is needed to
convert the enrolled speech feature x(enr) into speaker embed-
ding v(enr) with dimension RE . Since the embedding size is
too large, it can then be reduced to RE′

by a fully connected
layer. To merge with another branch, this embedding will be
replicated T times to generate y

(enr)
t with dimension RT×E′

.
The information from these two branches is then com-

bined by concatenation ⊕, with dimension RT×(E′+F). Since
the target speaker’s information needs to affect every frame
in the tested speech, this problem can be solved by using a
self-attentive mechanism, i.e., through several layers of stacked
Transformer encoder blocks (with Ntrans layers). The output
zt is shown in Equation 2.

zt = Transformer
(
y
(enr)
t ⊕ x

(conf)
t

)
(2)

The fused information zt is then sent to two separate fully
connected layers (FC) to create VAD decisions with γ (zt) and
β (zt) with dimension RT×1. These decisions are then applied
to the original speech features x(tst)

t by the FiLM layer [24] to
create x

(vad)
t with dimension RT×F , in Equation 3. Since they

have different dimensions, it is necessary to use one-to-many
operations.

x
(vad)
t = FiLM(zt) = γ (zt) · x(tst)

t + β (zt) (3)

Label-free Optimization with Triplet-like Loss: To com-
pletely avoid constructing inaccurate strong VAD labels, it is ef-
fective to use only the speaker’s label for VAD-label-free train-
ing. Figure 3 summarizes the main structure of the SVVAD
framework: the modified speech features x(vad) are directly
sent into the SV model to obtain the embedding v(vad). To
achieve label-free optimization during training, based on the as-
sumptions of SV, we only need to set different optimization ob-
jectives for different cases of the test speech. Specifically, if the
speech to be tested contains the voice of the target speaker, it
is considered a positive sample, otherwise it is a negative sam-
ple. This idea is consistent with the triplet-loss (TL) mecha-
nism [27], shown in Equation 4. Where α is the margin, B is
the batch size. xa

i , xp
i and xn

i is the anchor, positive and nega-
tive sample respectively at sample i, and can then be converted
to speaker embeddings va

i , vp
i and vn

i by SV model. ∥·∥2 is
2-norm. [·]+ is equivalent to max (·, 0) or ReLU (·).
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Figure 3: The overview of SVVAD framework.
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LTL =
B∑

i

[
∥va

i − vp
i ∥22 − ∥va

i − vn
i ∥22 + α

]
+

(4)

Since in SV, scoring uses the cosine distance instead of
mean square error (MSE) in Equation 4, the triplet loss can be
rewritten in terms of the cosine distance [28] (denoted as TL-
cos), in Equation 5. The cosine distance cos (·) is expressed as
1 minus its cosine similarity.

LTLcos =
B∑

i

[cos (va
i ,v

p
i )− cos (va

i ,v
n
i ) + α]+ (5)

Since these losses only consider the distance between indi-
vidual samples and not their overall statistical properties, they
may lead to suboptimal performance. To this end, Lin’s con-
cordance correlation coefficient (CCC) [29] loss is more reli-
able and can be used to stabilize the training process, so as to
improve the VAD performance. Then, the Equation 4 can be
changed to Equation 6 (denoted as TLccc), and Equation 5 can
be modified to Equation 7, 8 (denoted as TLccos).

LTLccc = [CCC (va,vp)− CCC(va,vn) + α]+ (6)

LTLccos =




CCC

(
cos (va,vp) + α,

cos (va,vn)

)
cond > 0

0 cond ≤ 0
(7)

cond = cos (va,vp)− cos (va,vn) + α (8)

2.3. Training and Inference

Let’s start by discussing the inference phase, the model first
accepts the target speaker’s embedding v(enr) and the speech
features to be tested x(tst) to construct a VAD decision γ (zt)
and β (zt). These decisions modify the original speech feature
x(tst) by FiLM rules to form x(vad). It can then be converted
into a speaker embedding v(vad) by a pre-trained SV model.
Finally, v(enr) and v(vad) will be scored by cosine similarity.

In the training phase, except for the same operations as in
the inference phase, the data-loader will simultaneously con-
struct the anchor, positive and negative samples xa, xp and
xn in real-time. These samples are fed into the trainable VAD
and non-trainable SV model to obtain the speaker embeddings
va, vp and vn, which are then trained by the triplet-like losses
through Equation 4 to 7. However, since there is no existing
dataset of multi-speaker speech, we will adopt a special method
to generate these samples.

2.4. Training Data Generation

Multi-speaker samples are generated by concatenating samples
from the single-speaker dataset, shown in pseudo-code of Al-
gorithm 1. Where the sign ∗ is either positive p or negative
n. D∗ is speaker IDs. S∗ is multi-speaker speech samples.
pspk and poverlap are the probatility of speaking and the speech
overlap. ϕ represents the empty set or the silence. length (·)
is to obtain the length of the sample. random () is a value
sampled uniformly between 0 and 1. get (·) is to get au-
dio samples of random duration by the given id or silence ϕ.
select (·) is to randomly select speaker ids. concat (·, ·) is to
concatenate the former and the latter to form a longer sequence.
overlapConcat (·) is to operate concatenating but overlapped
by a certain ratio. Audio augmentation is performed as fol-
lows: all samples are augmented by probabilistically adding
noise with SNR of 10 dB to 30 dB, and RIR reverberation. With
this approach, the anchor, positive and negative samples (Sa, Sp

Algorithm 1 Training Data Generation Policy
Input: Dataset with single-speaker samples
Output: Multi-speaker samples with anchor, positive, negative
1: for each iteration in training do
2: Randomly select the anchor speaker ID as da

3: Create anchor samples Sa ← get (da)
4: Randomly select the number of speakers (≤ 3) for positive or negative,

and their corresponding speaker IDs as D∗, where da ∈ Dp and da /∈ Dn

5: Create empty samples for positive and negative S∗ ← ϕ
6: while length (S∗) < a fixed duration do
7: /* the previous and current states are different */
8: if random () < pspk then
9: id← select (D∗)

10: sid ← get (id)
11: if random () < poverlap then
12: S∗ ← overlapConcat (S∗, sid)
13: else
14: S∗ ← concat (S∗, sid)
15: end if
16: else
17: sϕ ← get (ϕ)
18: S∗ ← concat (S∗, sϕ)
19: end if
20: end while
21: Audio augmentation for sample Sa and S∗
22: end for
return Sa, Sp, Sn

and Sn) are created. Since the SV model is well trained and SV-
VAD requires an explicit learning target, the sample xa is used
directly to construct xp.

3. Experiments
3.1. Experimental Setup

To validate our proposed SVVAD framework, we employ a pre-
trained SV model1 that shares the same experimental setup with
our framework. That is, the SV model uses ECAPA-TDNN
[30] from SpeechBrain [31] trained on the Voxceleb dataset
[32]. The SVVAD has trained with Voxceleb 1+2 dataset and
tested on the test set constructed from the Voxceleb1 (cleaned)
verification set by concatenating audio segments from different
speakers with varying proportions P (percentage of the duration
of other speakers’ voices). Considering the variability inherent
in the generation of synthetic data, each set of experimental data
will be constructed 3 times. The test metrics are similar to the
SV frameworks and are reported as the equal error rate (EER) in
percentage (%) and minimum decision cost function (minDCF)
at Ptarget = 0.01 with CFA = CMiss = 1 [30].

Two baseline methods were added to the experiment for
comparison to assess the impact of the different methods on SV
performance: (1) WebRTC-VAD [33] with default settings; (2)
The traditional PVAD model (in § 2.1). For the SVVAD frame-
work, the SV performance of the four variants of the triplet-like
loss (in Equation 4 to 8) will be measured.

3.2. Implementation Details

For speech features, the entire framework uses the same Log-
Mel-Filterbanks extractor as the pre-trained SV model [31]. In
SVVAD, the size of the Conformer encoder is F = 256. The
number of Conformer and Transformer layers in SVVAD is
Nconf = 4 and Ntrans = 3 respectively, and both have a feed-
forward size of 256. The size of the speaker embedding and
the shrunken embedding are E = 192 and E′ = 64 respec-
tively. The parameter α in triplet-like loss is 0.9, 0.5, 0.55, 0.55
in TL, TLcos, TLccc and TLccos respectively. The probability
pspk = 0.9 and poverlap = 0.3.

1https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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Table 1: Overall comparison of the proposed SVVAD with 4
triplet-like losses and the baseline models on EER (%) and
minDCF (denoted as C0.01). + denotes adding methods.

P 0% 30% 50% 70%

EER C0.01 EER C0.01 EER C0.01 EER C0.01

Baselines
w/o VAD 0.90 0.1104 2.27 0.2284 14.84 0.6950 34.70 0.9942
WebRTC 1.14 0.1215 2.31 0.2332 14.50 0.6733 33.94 0.9873
PVAD 6.22 0.5084 7.95 0.5621 9.89 0.6080 16.29 0.7893

SVVAD + Triplet-like Loss (ours)
+TL 4.63 0.4412 6.39 0.4794 8.62 0.5893 18.32 0.8621
+TLcos 5.48 0.5253 7.15 0.5336 9.73 0.6012 21.37 0.9157
+TLccc 1.41 0.1201 1.89 0.1996 6.91 0.4912 13.42 0.7396
+TLccos 2.06 0.1926 4.30 0.3729 7.26 0.5433 16.30 0.7605

Table 2: Ablation study of the effect of the combination of two
types of losses on SV performance on EER (%).

L / P 0% 30% 50% 70%

TL 4.63 6.39 8.62 18.32
+TLcos 4.17 5.76 7.75 17.29

TLccc 1.41 1.89 6.91 13.42
+TLccos 1.18 1.70 5.81 12.20

In the first stage, the model is optimized by SGD optimizer
for fast convergence, with the learning rate of 1e-2, the momen-
tum of 0.9, and the weight decay of 4e-4. The speech durations
of training of anchor, positive and negative are 6, 8, 8 seconds.
The batch size is B = 8. In the fine-tuning stage, the optimizer
is switched to AdamW [34], and the learning rate is changed
to 1e-4, and the weight decay is 2e-5. The speech durations of
these three are changed to 8, 12, 12 seconds. The batch size is
B = 64 with gradient accumulation.

3.3. Evaluation Results

Overall Evaluation: Table 1 compares the EER and minDCF
of various methods at different P . As for the baseline, the
WebRTC-VAD does not enhance the SV performance, some-
times even worse. The PVAD model can improve the SV per-
formance to some extent, but the improvement is limited. For
SVVAD, among 4 triplet-like losses, the addition of CCC leads
to a significant improvement in the SV performance. But sur-
prisingly, the cosine distance-based loss, which is theoretically
more suitable because it is used for scoring, perform worse than
the other losses. In our analysis, this may be due to the fact that
the cosine distance-based loss considers only one value as the
learning target instead of using the E-dimensional embedding
for optimization, which may lead to a large amount of loss of
embedding information when training SVVAD, thus making it
difficult to converge. Furthermore, there is a noticeable drop
in SV performance when no one else is speaking (P = 0%),
which is unsatisfactory.
Ablation Study: To solve the above problem, we combine two
types of losses, which can not only effectively reduce the ambi-
guity of the learning objectives, but also optimize the cosine dis-
tance for scoring. The experimental results are reported in Ta-
ble 2. For faster training, the model is trained on the basis of TL
and TLccc. The total loss L consists of two sub-losses, they are
(LTLcos + ξ · LTL) or (LTLccos + ξ · LTLccc), where ξ is the
hyperparameter determined by the experiment (set as 0.1). The
results demonstrate that by integrating these two sub-losses, the
SV performance is further improved when P is larger. In ad-
dition, there is no major performance degradation at P = 0%.

Figure 4: The speech features of x(tst) and x(vad) with their
VAD decision boundaries (click on the figure to hear the sound).
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Figure 5: The t-SNE plots of v(vad) for 10 example speakers in
conditions of (1) with or without SVVAD; (2) the different P .

(a) w/o; 0% (b) w/o; 30% (c) w/o; 50% (d) w/o; 70%

(e) w/; 0% (f) w/; 30% (g) w/; 50% (h) w/; 70%

The best-performing model achieves relative EER reductions
over PVAD of 78.6%, 41.3% and 25.1% when P is 30%, 50%
and 70% respectively.
Generated Samples: According to Figure 5, SVVAD produces
more aggregated speaker embeddings when P is large, indicat-
ing that the model can achieve a greater improvement in SV per-
formance when the input is mixed with more speech from non-
target speakers. Conversely, when P is small, the compactness
of the cluster looks similar, suggesting that the SV performance
is nearly the same. Figure 4 illustrates the decision boundaries
generated by SVVAD, indicating that, similar to human percep-
tion, the model attempts to mask out the speech of non-target
speakers and reduce strong noise, thereby suppressing their im-
pact on SV performance degradation. However, the embient
noise may be negligible probably because the SV model is in-
herently robust to it.

4. Conclusions
In this paper, we present SVVAD, a speaker verification-based
voice activity detection framework according to which speech
features are most beneficial for SV. We also introduce a label-
free training method that optimizes with the triplet-like loss ap-
proach, without relying on human labeling. Extensive experi-
ments on various scenarios show that SVVAD outperforms the
baselines in terms of EER in noisy and multi-speaker condi-
tions. Furthermore, the decision boundaries reveal the impor-
tance of different parts of speech for SV, which is largely con-
sistent with human perception. This work opens up new possi-
bilities for developing more robust and accurate VADs for SV
systems in real-world applications.
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