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Abstract

This paper presents a novel optimization framework for auto-
matic speech recognition (ASR) with the aim of reducing hal-
lucinations produced by an ASR model. The proposed frame-
work optimizes the ASR model to maximize an expected fac-
tual consistency score between ASR hypotheses and ground-
truth transcriptions, where the factual consistency score is com-
puted by a separately trained estimator. Experimental results
using the AMI meeting corpus and the VoxPopuli corpus show
that the ASR model trained with the proposed framework gener-
ates ASR hypotheses that have significantly higher consistency
scores with ground-truth transcriptions while maintaining the
word error rates close to those of cross entropy-trained ASR
models. Furthermore, it is shown that training the ASR models
with the proposed framework improves the speech summariza-
tion quality as measured by the factual consistency of meeting
conversation summaries generated by a large language model.
Index Terms: speech recognition, speech summarization, hal-
lucination errors

1. Introduction

Thanks to substantial progress in deep learning techniques,
such as advanced model architectures [1, 2] and training cri-
teria [3, 4, 5, 6] as well as the utilization of large-scale train-
ing data [7, 8, 9, 10], the automatic speech recognition (ASR)
accuracy has significantly improved. For example, latest ASR
systems achieved lower word error rates (WERs) than human
transcribers for many public test sets, such as the LibriSpeech
[11, 12] and Switchboard benchmarks [13, 14]. It was also re-
ported that a large ASR model trained on 68K hours of tran-
scribed data curated from the Web achieved domain robustness
and accuracy closer to that of the human transcribers [10].

However, the ASR technology is still prone to recognition
errors under different conditions. To complicate matters, an
ASR model with a strong language modeling (LM) capability
can produce fluent but factually ungrounded, or hallucinated,
ASR errors, regardless of whether the LM is part of an end-
to-end ASR model [15, 16, 17] or explicitly provided as with
hybrid ASR [18]. These errors often make the transcriptions
difficult or confusing for humans and downstream natural lan-
guage processing (NLP) modules, such as an automatic sum-
marization module, to comprehend and thus have a detrimental
effect.

Many approaches were explored to alleviate the negative
effect that the ASR errors have on the downstream tasks. A
conventional approach is using N-best hypotheses or lattices
in the subsequent NLP modules [19, 20]. However, feeding
the N-best/lattice representations requires significant changes
to the NLP modules, and how to do so is not obvious for
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Figure 1: Factual consistency maximization of ASR.

many state-of-the-art NLP models pre-trained on regular texts,
such as GPT-3 [21]. Another approach is joint optimization
of the ASR and NLP modules either by end-to-end modeling
[22, 23, 24, 25] or by using an NLP task-oriented loss [26].
While this approach has shown promising improvements on the
downstream NLP tasks, using a task-specific architecture or loss
may make the ASR model suitable only for the specific task it
was trained for. In addition, joint modeling approach is difficult
to apply to a task that handles very long sequences, such as a
speech summarization task. For example, the current text sum-
marization model is often trained to process more than 8,000
tokens, which roughly corresponds to 30-40 audio minutes. It
is not trivial to train joint models for such long audio inputs,
and therefore existing joint ASR and summarization models are
limited to handling short durations such as 100 seconds [24] or
300 seconds [25].

In this paper, we propose an ASR optimization scheme for
factual consistency, with the aim of reducing hallucinations of
the ASR model. Figure 1 shows an overview of our proposed
method along with illustrative transcriptions and scores. In this
example, the ground-truth transcription of the input audio is
“I don’t know.” Meanwhile, the ASR system has produced “/
know.” and “I dunno.” with posterior probabilities of 0.8 and
0.2, respectively. In terms of the WER ignoring the punctua-
tions, the second hypothesis would be worse than the first one
(67% vs. 33%). However, the second hypothesis is factually or
semantically more consistent with the ground-truth transcrip-
tion. Our proposed optimization method encourages the ASR
model to produce the second hypothesis over the first one by
maximizing an expected factual consistency score.

Section 2 reviews related works. Section 3 describes the
proposed factual consistency maximization framework. Section
4 reports experimental results using the AMI meeting corpus
[27] and the VoxPopuli corpus [28], where the effectiveness of
our method is demonstrated for both utterance-wise evaluation
and speech summarization. Section 5 concludes the paper.
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2. Related works

2.1. Quality measurement for generated texts

A lot of effort has been made for measuring the quality of texts
generated by ASR or NLP models. While the ASR models are
typically evaluated with the WER or character error rate de-
pending on the language, several task-specific metrics were also
utilized, such as argument WER [22] for spoken language un-
derstanding tasks. In NLP, various quality metrics were pro-
posed for different tasks, including BLEU [29], ROUGE [30],
and METEOR [31]. Recent work showed metrics based on
pre-trained LMs are better correlated with human evaluation
scores. BERTScore [32], MoverScore [33], and several other
methods were proposed to estimate a general semantic similar-
ity between two sentences based on pre-trained LMs.

Factual consistency between two texts [34, 35, 36], which
is commonly used for evaluating natural language generation
systems, is one key approach to taking account of hallucina-
tions in the text quality assessment. In this work, we mainly
use UniEval [37] to compute the factual consistency score be-
cause of its superior correlation with human ratings. UniEval
was trained by fine-tuning T5-large [38] based on artificially
manipulated documents to provide multiple explainable dimen-
sions of generated texts such as consistency and fluency, re-
sulting in multiple models with different flavors. UniEval-sum
was specially trained for summarization to evaluate multiple as-
pects related to summarization (e.g., consistency, fluency, co-
herence) while UniEval-fact was trained only for factual consis-
tency scoring. Both models produce a factual consistency score
between 0 (low consistency) and 1 (high consistency) given two
texts. In our work, we used UniEval-fact for ASR optimization
and utterance-wise evaluation while UniEval-sum for speech
summarization evaluation. We also used FactCC [34], which
is another factual consistency evaluator based on BERT [39], in
the utterance-wise evaluation to further validate the effective-
ness of the proposed method.

2.2. ASR optimization

An ASR model is usually trained with a cross-entropy (CE) loss
between the model’s output distribution and the ground-truth la-
bels. Since the CE loss does not directly minimize the WER,
alternative training schemes such as minimum WER training
[3, 5, 6] are also widely adopted. Our work can be consid-
ered as a variant of minimum WER training, where we optimize
the ASR model based on the UniEval-based factual consistency
score instead of the WER.

Joint optimization of ASR and NLP models, such as end-to-
end speech summarization [24, 25] or end-to-end spoken natu-
ral language understanding [22, 23], is also related to our work.
Notably, Rao et al. [26] proposed to integrate evaluation met-
rics for intent classification and slot filling into the ASR train-
ing criterion. While Rao’s work shares the same backbone in
the optimization scheme with ours, we attempt to avoid using a
task-specific metric and conduct evaluation with a task that the
model is not directly trained for.

3. Factual consistency maximization
training of ASR

3.1. Training objective function

Suppose we have ASR training dataset D = {X,,Y:}req,
where X, is the r-th training audio sample, Y, is the corre-
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sponding ground-truth transcription, and €2 is the sample index
set. We propose to maximize the following training criterion:

Fe=3%"¢, )

req)

where C,. is the expected consistency score for the r-th training
sample, which is estimated as follows:

Cr = Z P(Y|X,){|Y»| - Consistency(Y;Y,;)}. (2)
YeB(Xr)

Here, B() is a beam search function which returns the N-best
hypotheses for X, based on the current ASR model parameters.
Function Consistency(Y’; Y;.) calculates a consistency score of
Y measured against the ground-truth transcription Y., which is
obtained by a factual consistency evaluator. |Y;| is the number
of words in Y;.. Finally, P(Y|X,) is the normalized posterior
probability of Y that is defined as

: P(Y|X,)
PY|X,) = T
Pvrenx,) PYXr)

where P (Y| X, ) is the raw posterior probability of Y given X,..

3

3.2. Training procedure

Now, we describe the training procedure for attention encoder-
decoder-based ASR models [17]. The training algorithms for
other ASR model types, such as connectionist temporal classi-
fication [15] or recurrent neural network transducer [16], can be
derived based on similar formulations.

With attention encoder-decoder-based ASR, the decoder
module iteratively generates an output distribution over recog-
nition tokens (i.e., characters, subwords, or words). Given the
output o,,;, where n is the decoder iteration index and ¢ is
the token index, the derivative of the objective function with
respect to log(on,s) is calculated for each N-best hypothesis
Y € B(X,) if and only if the token index at the n-th position
of Y is equal to .

OF"C 5 . =
Blog(ond) = P(Y|X,){|Yr| - Consistency(Y;Y;) — C.}.
C))

Otherwise, log(on,;) is zero.

The overall training procedure is as follows. For each train-
ing sample { X, Y, }, we first decode X, with beam search to
generate the N-best hypotheses Y based on the current model
parameters. We then compute the normalized posterior prob-
ability of each hypothesis based on Eq. (3). Next, we com-
pute the empirical expected consistency score C,- per Eq. (2).
We then compute the training objective derivative with respect
to log(on,;) by using Eq. (4). Finally, we perform back-
propagation to compute the gradient, and update the model pa-
rameter values based on the gradient ascent algorithm.

Note that maximizing the factual consistency does not nec-
essarily improve the WER as illustrated in Fig. 1. Also, the fac-
tual consistency maximization tends to encourage a hypothesis
with fewer output tokens to avoid hallucination errors. There-
fore, it is important to have some safeguard to avoid severe dele-
tion errors, such as interpolating a conventional CE loss. In this
work, we adopted a simple early-stopping approach where we
applied the factual consistency maximization to a well-trained
model based on the CE loss, and limited the number of updates
to a relatively small number.



4. Experiments

We evaluated the proposed ASR training framework in two sce-
narios. In the first experiment, both the training and evalua-
tion of ASR models used short utterances (Section 4.1) con-
sistently. This experiment was carried out to validate the cor-
rectness and effectiveness of our formulation. In the second
experiment, we conducted a speech summarization experiment
(Section 4.2). We applied speech summarization to the meet-
ing transcriptions generated by the ASR models and measured
the impacts of the different ASR models on the summarization
quality. This experiment was performed to investigate whether
optimizing the ASR models for factual consistency helps im-
prove a downstream task by using the speech summarization
as an example. Note that improving the summarization quality
is not straightforward since the ASR models are optimized at
the utterance level despite the evaluation being performed with
much longer segments. We also used a state-of-the-art large lan-
guage model-based (LLM) summarization model to obtain rele-
vant conclusions, unlike previous speech summarization works.

4.1. Utterance-wise evaluation
4.1.1. Experiment settings

In this experiment, we evaluated ASR models by using both the
utterance-level factual consistency score and WER to examine
the impact of the proposed training method. We used the AMI
meeting corpus [27] and the VoxPopuli corpus [28].

The AMI meeting corpus contains approximately 100 hours
of meeting recordings captured by both independent headset
microphones (IHM) and multiple distant microphones. In our
experiment, we used the IHM audio with ground-truth utter-
ance boundaries. We followed the Kaldi recipe [40] for parti-
tioning the data into training, development, and evaluation sets,
resulting in 80.2 hours, 9.7 hours, and 9.1 hours of recordings
for these splits, respectively. Unlike a conventional ASR ex-
periment using case-normalized and non-punctuated transcrip-
tions for training and testing, we used the case-sensitive and
punctuated-transcriptions based on the official transcription’
throughout our experiments. We chose to do so because the fac-
tual consistency evaluator (in our case, UniEval [37]) is case-
and punctuation-sensitive. Only for the WER scoring, we ap-
plied the text normalizer provided by [10].

The VoxPopuli corpus consists of 100K hours of unlabelled
speech data in 23 languages, as well as 1.8K hours of tran-
scribed speech in 16 languages. In our experiment, we used
the transcribed English subset. The official dataset is split into
training, development, and testing sets, which contains 522.6
hours, 5.0 hours, and 4.9 hours of speech, respectively. As with
the AMI meeting corpus, we used the case-sensitive, punctu-
ated transcriptions. Note that we excluded roughly 3% of the
development and testing sets (58 out of 1753 sentences in the
development set and 52 out of 1842 sentences in the testing set)
that did not have case-sensitive, punctuated transcriptions.

We used the Whisper Base model [10] as our initial ASR
model. In the experiment with the AMI meeting corpus, we first
fine-tuned the Whisper Base on the AMI training set with the
CE loss. We conducted 2,500 training iterations with 8§ GPUs,
each consuming mini-batches of 15,000 frames. We used a lin-
ear decay learning rate schedule with an initial learning rate of
le-5. After the CE-loss-based fine-tuning, we further updated

'We used the words and punctuations of the official annotation with-
out modifications. The only exception was that we removed underscores
from a word (e.g., X_-M_L_ was converted to XML).

238

Table 1: WER (%), UniEval-fact consistency score (UE) and
FactCC consistency score (FCC) for AMI-IHM development
and evaluation sets. FCM: factual consistency maximization.

ASR model AMI-THM dev AMI-THM eval
WER (}) UE (1) FCC (1) WER (}) UE (1) FCC (1)
Whisper Base  19.7  0.727 0.925 20.3  0.719 0913
<~ CE-loss 11.5 0.785 0.930 126 0.787 0.932
—FCM 114 0.799 0.942 12.5 0.801 0.940

Table 2: WER (%), UniEval-fact consistency score (UE) and
FactCC consistency score (FCC) for VoxPopuli development
and test sets. FCM: factual consistency maximization.

ASR model

VoxPopuli dev*
WER (1) UE (1) FCC (1)

VoxPopuli test*
WER () UE (1) FCC (1)

Whisper Base 9.4 0.755 0.896 9.4 0.747 0.887
— CE-loss 8.2 0.766  0.901 8.3 0.757 0.886
—FCM 84 0.795  0.920 8.5 0.791 0911

* Utterances without case and punctuated transcriptions were excluded.

the model based on the proposed factual consistency maximiza-
tion by using the same AMI training data. We used UniEval-fact
to compute the consistency score and used an N-best size of 4
to compute the gradient. We conducted 2,500 training iterations
with 8 GPUs, each consuming 1 sample for one training itera-
tion. A linear decay learning rate schedule was used, starting
with a learning rate of le-6. The VoxPopuli experiment was
conducted with almost the same setting but using 6,250 train-
ing iterations with 8 GPUs (i.e., a total of 50,000-minibatch
consumption) for both the CE loss-based training and factual
consistency maximization.

In the evaluation, we performed beam search decoding with
a beam size of 4. We set the language tag to English to en-
force the model to output only English transcriptions [10]. We
evaluated the WER by applying the text normalizer provided
in [10]. We also computed the factual consistency score of the
ASR hypothesis given the ground-truth transcription using two
different factual consistency evaluators: UniEval-fact [37] and
FactCC [34]. For UniEval-fact, we report the average factual
consistency score over the test utterances. For FactCC, we re-
port the ratio of the hypotheses that were judged to be consistent
with the ground-truth transcriptions as FactCC makes a binary
decision as to the factual consistency. For both consistency met-
rics, a higher score means the ASR hypothesis is more factually
consistent with the ground-truth transcription.

4.1.2. Results

The results for AMI-IHM and VoxPopuli are shown in Tables
1 and 2, respectively. We can see that the CE-loss-based fine-
tuning achieved significant gains in both WER and consistency
score for most evaluation sets except for the FCC score on Vox-
Populi test set. Furthermore, we can see that the proposed fac-
tual consistency maximization further improved all the consis-
tency metrics while keeping the WER almost intact. For Vox-
Populi, as one may expect, marginal WER degradation was ob-
served because our training objective was not aimed at mini-
mizing the label prediction errors as illustrated in Fig. 1.

4.2. Speech summarization evaluation

4.2.1. Experiment settings

We also evaluated the proposed ASR training method by per-
forming automatic summarization using the ASR-generated
transcriptions. In this experiment, we used the AMI meeting



corpus.

We opted to create our own experiment setup due to the
challenges that we faced when we attempted to use existing
speech summarization corpora. We initially tried to use the
ROUGE score [30] based on the human-crafted abstractive
summaries provided in the AMI official annotations. How-
ever, a preliminary experiment revealed that the number of ses-
sions in the AMI development and evaluation sets was too small
(18 and 16 sessions, respectively) to discuss the statistical dif-
ferences in the summarization quality between different sys-
tems. We also considered other speech summarization datasets,
namely the How2 dataset [41] and the SLUE-TED corpus [25].
However, the How2 dataset provides only feature files that are
not compatible with our ASR models, and the SLUE-TED cor-
pus has yet to be released at the time of writing. In addition to
the lack of the evaluation data, recent studies also reported that
the correlation between the ROUGE and human scores is much
weaker than LM-based metrics (e.g., [37]).

With these considerations, we designed our speech summa-
rization experiment as follows.

1. Split the AMI development and evaluation set recordings into
non-overlapping chunks of 60 seconds.

2. Conduct the following steps for each 60-s chunk.

(a) Apply ASR. We used the IHM audio with ground-truth
segmentation.

(b) Convert the ASR hypotheses to a speaker-attributed tran-
scription format with a template of “Speaker [mic-index]:
[ASR-hypothesis]\n”. We used the headset microphone
index as the speaker index and sorted the hypotheses based
on the start time of each utterance. For example, three ASR
hypotheses consisting of “Hello. (mic-index=1, start=1s)”,
“Hi, how are you? (mic-index=2, start=3s)”, and “I’m fine.
(mic-indexl=1, start=5s)” would be converted to “Speaker
1: Hello.\nSpeaker 2: Hi, how are you?\nSpeaker 1: I'm
fine.\n”.

Generate a summary text for the speaker-attributed tran-
scription obtained in the previous step. We used In-
structGPT (text-davinci-002) [42] to generate the summary
by prompting the model as “[speaker-attributed transcrip-
tion]\nSummarize the conversation above.\n”. We em-
ployed the least randomness configuration by setting tem-
perature, top_p, and max_tokens at 0.0, 1.0, and 200, re-
spectively.

(©

(d) Compute the factual consistency score of the generated
summary by using the ground-truth speaker-attributed
transcription as the reference, which was formatted in the
same way as 2 (b). We used UniEval-sum [37] for the con-

sistency scoring.

3. Compute the average of the factual consistency scores over
all the 60-s chunks.

As a result, we obtained 574 and 542 speech summariza-
tion testing materials (i.e., 60-s chunks) for the development and
evaluation sets, respectively, which enabled us to draw statisti-
cally relevant conclusions regarding the summarization quality.
Note that UniEval-sum can also produce other metrics, such as
the fluency and coherence of the generated summaries. As these
metrics are irrelevant to the ASR errors (that is, the fluency and
coherence scores are determined primarily by the summariza-
tion model quality rather than the quality of the input text pro-
duced by the ASR), we only report the UniEval-sum factual
consistency result, which would best reflect the impact of the
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Table 3: Summarization consistency score based on UniEval-
sum for AMI development and evaluation sets. FC: factual con-
sistency.

ASR model Summarization consistency (1)
AMI dev AMI eval
Whisper Base 0.697 0.739
— CE-loss fine-tuning 0.698 0.745
...? FC maximization 0706 ... 0748
Ground-truth transcription 0.709 0.753

ASR performance on the summarization.

4.2.2. Results

Table 3 shows the speech summarization experiment result. The
ASR models trained in the utterance-wise evaluation experi-
ment (Section 4.1) were used. We also measured the consis-
tency score for the summaries generated by using the ground-
truth transcriptions as input. This can be considered as the up-
per bound of the consistency score that can be achieved with the
employed summarization model. First, we can observe that the
summarization consistency score obtained with Whisper Base
was significantly lower than that of the ground-truth transcrip-
tion. This shows the negative impact of the ASR errors on
the summarization quality. It can also be seen that the CE
fine-tuning slightly improved the consistency score. The con-
sistency score for the development set was only improved by
0.1% despite the significant WER improvement from 19.7% to
11.5% (Table 1). On the other hand, the proposed factual con-
sistency maximization further improved the consistency scores
for both the development and evaluation sets, coming close to
the ground-truth-based upper bound scores.

We further conducted paired t-tests for the results of Ta-
ble 3. The consistency score difference between the summary
texts obtained with Whisper Base (0.739) and those with the CE
fine-tuned model (0.745) was judged to be not significant with
95% confidence. On the other hand, the difference between
the summarization with Whisper Base (0.739) and that with
the proposed factual consistency-maximized model (0.748) was
judged to be significant with 95% confidence. Finally, the
difference between the summarization with the CE fine-tuned
model and that with the factual consistency-maximized model
was also judged to be significant with 95% confidence for the
development set (0.698 vs 0.706) while it was not the case for
the evaluation set (0.745 vs 0.748), which we would attribute to
the yet limited number of evaluation samples. Overall, we ob-
served a clear trend showing the effectiveness of the proposed
factual consistency maximization method even when using the
powerful LLM for the speech summarization.

5. Conclusions

In this paper, we proposed a novel ASR training framework,
which optimizes the ASR model for maximizing the factual
consistency between an ASR hypothesis and a ground-truth
transcription. In our experiments using the AMI meeting corpus
and the VoxPopuli corpus, we showed that the ASR model opti-
mized by the proposed framework produced hypotheses which
had significantly higher consistency scores with the ground-
truth transcriptions while keeping the WER almost intact. We
also showed that using the ASR models trained with the pro-
posed framework improved the speech summarization quality
for meeting conversations, demonstrating the usefulness of the
proposed method in a challenging downstream NLP task.
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