
VC-T: Streaming Voice Conversion Based on Neural Transducer

Hiroki Kanagawa∗ , Takafumi Moriya∗, Yusuke Ijima

NTT Corporation, Japan
hiroki.kanagawa@ntt.com

Abstract
A conventional sequence-to-sequence voice conversion
(seq2seq VC), i.e., attentional encoder-decoder, can be trained
without the speech sequence pre-aligning normally used to
counter the different lengths of the source and target speakers.
However, if alignments rendered by attention are not mono-
tonic, speech drops and repeats will happen, and the linguistic
contents will not be kept. To address this issue, we propose
VC-T, a novel streaming VC framework based on a neural
transducer (RNNT); RNNT is effective in the automatic speech
recognition field as it offers robust alignment against collapse.
We also introduce an alignment design scheme for VC-T
training. Experiments show that our offline and streaming
VC-T variants outperform two modern seq2seq parallel VCs
while offering a lower character error rate as a result of the
proposal robust alignment. Our VC-T also achieves better
naturalness the drastic degradation suffered by the conventional
alternatives, especially for streaming VC.
Index Terms: streaming voice conversion, neural transducer

1. Introduction
Voice conversion (VC) is a technique that converts the source
speaker’s characteristics into those of the target speaker while
preserving the linguistic content of the input speech. With the
introduction of the statistical model-based approach, VC has
been aggressively studied [1, 2, 3]. These studies can be roughly
categorized into non-parallel and parallel VC approaches.

The non-parallel VC approach, which has been was actively
studied in recent years, allows the training data to consist of dif-
ferent speech content from the source and target speakers. This
advantage is well utilized by variational auto-encoder (VAE)-
based approaches [4, 5, 6] and generative adversarial network
(GAN)-based ones [7, 8, 9], as it offers large amounts of these
data. However, comprehensive coverage in the form of speaker
and utterance variations are required even for non-parallel data.
If the quantity of these variations are insufficient, the non-
parallel VC has difficulty in reproducing adequate speaker char-
acteristics while retaining the intended linguistic content.

The parallel VC approach requires the same speech content
between the source and target speakers in training, but can real-
ize high-quality VC while requiring less training data than the
non-parallel VC. The traditional offsets [3, 10, 11] aligned the
source and target speaker’s duration length differences with dy-
namic time warping (DTW) that is performed frame-wise. VC
performance heavily depends on DTW accuracy, so if acous-
tic features are mapped between mismatched phonemes, the
quality is degraded. The pre-alignment also drops the target

∗ Equal contribution.

speaker’s duration information, thus speaking rate conversion
cannot be performed. On the other hand, modern sequence-to-
sequence (seq2seq) based approaches model not only the spec-
tra differences but also duration differences across source and
target speakers by the attention mechanism within an attentional
encoder-decoder. This means that these approaches are DTW-
free, so VC with speaking rate alteration is possible. However,
if monotonic attention is not obtained, the results are corrupted
by speech dropouts and content repetition. To alleviate this
problem, [12] introduced a loss term that diagonalized the at-
tention [13]. However, since this loss term sets a diagonal con-
straint over the whole utterance, the attention, which maps the
source and target speaker’s phonemes, training becomes prob-
lematic.

To achieve robust VC, we propose the novel VC framework,
called VC-T. It is an advanced VC model based on the neural
transducer framework (RNNT) [14]. RNNT is promising for
developing accurate automatic speech recognition (ASR) [15]
schemes. RNNT learns a mapping between the input acoustic
feature and output token sequences even if they have different
lengths. The difference from seq2seq-based ASR is that RNNT
performs time synchronous decoding, not token synchronous
decoding. Thus the alignments generated by RNNT are def-
initely monotonic and diagonal. In [16], they applied RNNT
to realize a text-to-speech (TTS) model, i.e., Speech-T. The
Speech-T naturally avoids the attention collapse problem and
transduces the phoneme sequence into the acoustic feature se-
quence. Motivated by these studies, we apply the RNNT frame-
work to VC for the first time. To this end, we set two goals; 1)
fitting VC into the RNNT learning framework and 2) realizing
correspondences between phonemes that would be impossible
with the simple monotonic-attention constraint [13] employed
by ConvS2S-VC. Our proposal VC-T, achieves both goals by;
1) utilizing the Speech-T’s lazy forward algorithm, and 2) de-
signing explicit phoneme-by-phoneme alignments between the
source and target speaker. Objective and subjective evaluations
show the effectiveness of VC-T is due to its ability to produce
stable alignments. 1

2. Related work
2.1. Modern seq2seq parallel VC

2.1.1. ConvS2S-VC [12]

The traditional seq2seq model adopts RNNs for both encoder
and decoder model structures, and the encoder’s final hidden
states are fed to the decoder. Applying this to VC can di-
rectly convert speech without DTW between source and tar-

1Sample audios are available here: https://ntt-hilab-
gensp.github.io/is2023vct/
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Figure 1: (a) overviews the overall proposed VC-T. (b) and (c) are two types of source speech encoders used for offline and streaming,
(d) and (e) illustrate the target speech encoder and joint network, respectively. LN and MHA stand for the layer normalization and
multi-head self-attention modules, respectively. Each weighted module is tagged with input and unit size.

get speakers [17]. Its drawbacks are that RNNs cannot com-
pute the hidden state for each time step in parallel, and as
sequence length increases, the mismatch between RNNs dur-
ing training and inference increases, resulting in attention col-
lapse. ConvS2S replaces RNNs with CNNs to overcome these
issues [18]. ConvS2S-VC [12] applies this to VC and has
demonstrated better performance than frame-wise VC [19] and
RNN-based seq2seq one [17]. Replacing non-causal CNNs
with causal ones yields streaming operation. Note, the loss term
introduced by [13], constrains the alignment of the whole ut-
terance to be monotonic. This makes it difficult to guarantee
phoneme-by-phoneme correspondence because the source and
target speakers do not speak each phoneme at the same speed.

2.1.2. Phonetic posteriorgram (PPG)-based approach

Speaker characteristics of the source speaker may leak into the
VC’s decoder and degrade the conversion performance. This
problem is especially noticeable when there are multiple source
speakers (e.g., many-to-many, any-to-many VC). A phonetic
posteriorgram (PPG)-based approach is promising for remov-
ing these characteristics and extracting only linguistic informa-
tion [20, 21, 22, 23]. This is done by pre-training an ASR model
targeting phonemes and shared state IDs; the resulting model is
used as the VC encoder. The final or bottleneck output from
this ASR model is given to the decoder along with speaker in-
formation. BNE-S2SMoL-VC follows this framework, where
the encoder is a hybrid CTC-attention based ASR model [24];
its bottleneck features are mapped to the target speaker’s acous-
tic features using a mixed logistic attention decoder [25].

2.2. Speech-T: Neural transducer (RNNT) for TTS [16]

Tacotron2 [26] and TransformerTTS [27] are encoder-decoder
models in TTS, and they can suffer alignment collapse. While
FastSpeech2 [28] solves this problem by incorporating an ex-
plicit duration predictor, it cannot work in streaming mode. We
note that Speech-T development was focused on the ability to
obtain robust alignment and streaming operation of RNNT [14];
it has been utilized for TTS [16]. Regarding transition proba-
bilities for RNNT, ASR can model them as a single categorical
distribution along with a blank symbol and token labels. The
blank label is used for the transition probability in the Speech-T
model. However, TTS has a difficult trade-off between these
transition probabilities and the generation probability of spec-
tral, which is continuous variables. They proposed the forward
algorithm for generative RNNT that separates transition proba-
bility computation and spectral prediction. Speech-T with this
algorithm can synthesize natural speech without the alignment
collapse observed in TransformerTTS.

3. Proposed RNNT-based VC model (VC-T)
3.1. Model architecture and forward propagation
Encouraged by RNNT’s success in TTS, we propose an RNNT-
based VC (VC-T) that is resists alignment collapse. Figure 1 (a)
overviews VC-T; it consists of three modules, a source speech
encoder, a target speech encoder, and a joint network. Figure 1
(b) and (c) depict offline and streaming source speech encoder
networks2, respectively. Figure 1 (d) and (e) illustrate the tar-
get speech encoder and the joint networks, respectively. The
source speech encoder embeds the source speaker’s speech into
an intermediate representation. The target speech encoder also
receives the spectral part of the past joint network’s outputs and
emits another intermediate representation. Feeding these out-
puts to the joint network, yields prediction of the spectra and its
transition probability at the next time step. Here, we use the lazy
forward algorithm as in [16], and the alignment can be obtained
by using the following recurrence relation:

α (t, u) = α (t− 1, u)ϕ (t− 1, u)

+ α (t, u− 1) {1− ϕ (t, u− 1)} , (1)

where T and U are the number of frames in the source and tar-
get speaker’s spectrum, respectively. t and u are their indices.
Also, α (t, u) and ϕ (t, u) are the forward variables and transi-
tion probability on the trellis, respectively. ϕ (t, u) is obtained
from a value preprocessed by a sigmoid function of the VC-T
output vector. Each lattice of the trellis is computed according
to Eq. (1), and the objective function is given by:

L =

T∑

t=1

U∑

u=1

I {(t, u) ∈ τ}α (t, u) {1− ϕ (t, u)} |yu+1 − f(t, u)| ,

(2)

where yu+1 denotes the u + 1’th frame target speaker’s spec-
trum. f(t, u) is the t’th, and u’th predicted spectrum on the
lattice generated by VC-T. Note that, as we can see ϕ (t, u) and
f(t, u), the VC-T outputs three dimensional tensor T ×U ×D
in the training step. D is the number of VC-T output dimen-
sions that concatenate the predicted transition probability and
spectrum. Since filling all lattices is too computationally ex-
pensive, we omit the redundant predictive path computations
except for those neighboring τ band frames that are close to the
target alignment following [16]. Here I {(t, u) ∈ τ} is an indi-
cator function that tells whether or not index (t, u) is within the
constraint τ band of the target alignment detailed in 3.2.

3.2. Target alignment design for VC-T
As mentioned in Section 2.1.1, ConvS2S-VC does not guaran-
tee phoneme-by-phoneme correspondence between source and

2The streaming version can be built with causal convolution as is
done for the target speech encoder, but we used a simple GRU in this
paper.
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Figure 2: Each dashed block in the upper and lower heatmaps
represents actual Wn and An, respectively. The horizontal and
vertical axes correspond to the spectrum frames of the source
and target speakers, respectively. Each duration in middle leg-
ends means actual phoneme segmentation, and quoted tokens
by “/” mean phonemes.

Table 1: Our used VC models and the number of its parameters.
Method No. of parameters [million]
BNE-S2SMOL-VC [25] 20.8
CONVS2S-VC (OFFLINE) [12] 59.9
CONVS2S-VC (STREAM) 59.9
PROPOSED VC-T (OFFLINE) 19.7
PROPOSED VC-T (STREAM) 12.3

target speakers. Also, as stated in the previous section, the
RNNT training framework requires target alignment. To ad-
dress both of these issues and to implement VC-T, we design
the phoneme-by-phoneme frame correspondences to be rep-
resented by a rectangular alignment matrix derived from the
penalty matrix Wn ∈ RTn×Un as in [13]. Tn, Un are the
frame lengths of the source and target speakers at the n’th
phoneme, and each element of Wn is given by Wn (tn, un) =

1 − exp
{
− (tn/Tn − un/Un)

2 /2g2
}

, where tn and un are
the frame indices of the source and target speaker at the n’th
phoneme, respectively. g is a hyperparameter set to 0.2. In this
way, the n’th phoneme’s alignment matrix An ∈ RTn×Un is
given by:

An (tn, un) =

{
1 (tn = t̄n)
0 (tn ̸= t̄n)

, (3)

t̄n = argmin
tn

{wn (un)} , (4)

where An (·) and wn (un) ∈ RTn denote An’s element and
the un’th row vector of Wn, respectively. The upper and lower
heatmaps in Fig. 2 show the actual Wn and An values ob-
tained from the same training data, respectively. Incorporating
such target alignments for RNNT improves phonemes mapping,
which is mentioned in Section 2.1.1.

4. Experiments
4.1. Setup

For training VC models, we used multi-speaker speech data
from three professional Japanese narrators, one male and two
females. The sampling rate was 22.05 kHz. Each speaker
had 1000 parallel utterances, forty were used as the evalua-
tion set (about 3.3 minutes) and the rest as the training data
(about 2.9 hours). We used an 80-dimensional logarithmic mel-
spectrograms for the acoustic feature. The analysis frame shift

Table 2: Averaged mel-cepstrum distortion (MCD) and char-
acter error rate (CER). “F2F”, “M2F”, “F2M” denote
female−to−female, male−to−female, and female−to−male
scenario, respectively. The scores written in bold signify the
column-wise best. Note that the evaluation utterances are dif-
ferent in each gender scenario.

MCD [dB] CER [%]
Method F2F M2F F2M Avg. F2F M2F F2M Avg.

GT - - - - 12.9 14.1 14.5 14.0
RESYN - - - - 13.2 14.8 15.0 14.5

BNE-S2SMOL-VC 5.7 5.5 5.9 5.7 25.6 23.8 26.8 25.4
CONVS2S-VC (OFFLINE) 4.9 5.0 5.2 5.1 16.9 21.3 24.4 21.4
CONVS2S-VC (STREAM) 5.5 5.5 5.8 5.6 16.9 27.4 28.5 25.2

VC-T (OFFLINE) 5.1 5.0 5.2 5.2 14.3 16.7 17.9 16.6
VC-T (STREAM) 5.3 5.1 5.3 5.3 14.4 18.5 19.4 17.9

was 12.5 ms.
Three types of one-to-one VC models were trained for

each method: homo-gender conversion (Female2-to-Female1),
hetero-gender ones (Male1-to-Female1 and Female1-to-
Male1). Our proposed method was implemented as two
variants; an offline model with non-causal transformer en-
coders and a streaming model with simple GRU encoders
as shown in Fig. 1 (b) and (c), respectively. For designing
the alignment described in Section 3.2, we used manually
annotated phoneme labels, and set τ to 1. As the conventional
methods, ConvS2S-VC [12]3 and BNE-S2SMoL-VC [25]4,
mentioned in Section 2.1, were employed. ConvS2S-VC was
built not only in its offline version, but also in a streaming
version with zero look-ahead, i.e., the causal encoder5. These
models were optimized by Adam [29] in 200k steps with a
batch size of 16 by following [30]’s learning rate schedule.
Note that BNE-S2SMoL-VC has an encoder that predicts 56
kinds of phonemes. We trained it in 3000k steps with the
same learning rate schedule as the VC in advance, using data
from our 1,050 internal Japanese speakers (about 312.9 hours),
including VC’s training data. Afterwards, only its VC decoder
was trained under the same conditions as the other VCs, with
the encoder weights frozen. For waveform generation from
spectrograms, we used the speaker-independent HiFi-GAN
vocoder (v1) [31] 6, which was trained on same data as
BNE-S2SMoL-VC. Table 1 shows the number of the above
model parameters. Note that we did not investigate streaming
BNE-S2SMoL-VC because it adopted a naive encoder-decoder
that cannot run in a streaming manner.

4.2. Objective evaluations

We objectively evaluated each VC’s spectral reconstruction er-
ror and linguistic information correctness by the metrics of
mel-cepstrum distortion (MCD) and character error rate (CER),
respectively. MCD was calculated by converting the mel-
spectrogram from VC into a 40-dimensional mel-cepstrum
and then aligning the sequence length with that of the target
speaker’s natural speech by DTW. To evaluate CER, we used
the wav2vec2.0 ASR model [32]7 8. The ASR model was fed

3https://github.com/kamepong/ConvS2S-VC.git
4https://github.com/liusongxiang/ppg-vc.git
5Although by forcing the attention matrix to be diagonal, the output

frame length of the target speaker can be equal to that of the source
speaker, we adopted the predicted raw attention as well as the other
methods.

6https://github.com/jik876/hifi-gan.git
7https://huggingface.co/ttop324/

wav2vec2-live-japanese
8The model has 100 vocabulary entries including blank symbols,

Japanese kana, long vowel symbols, and alphabetic characters.
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Figure 3: Subjective evaluation results of naturalness.

with natural or vocoded speech, and a greedy search was ap-
plied to the obtained logits to yield the recognition results.

Table 2 lists the objective evaluation results. As oracles,
CERs for the ground truth speech (GT) and the analytic re-
synthesized one by HiFi-GAN (RESYN) were also calculated.
First, RESYN did not trigger any remarkable decreases in CER,
confirming that the vocoder posed no critical impediment to a
linguistic content. Next, BNE-S2SMOL-VC has similar MCD
and CER scores regardless of homo- and hetero-gender conver-
sion, because the encoder removes the speaker characteristic of
the source speaker. However, since no constraint is applied to
make the alignment monotonic, speech dropouts due to align-
ment skips were often observed, and the MCD and CER scores
were the worst among all methods. CONVS2S-VC (OFFLINE)
scored better than this in both MCD and CER. Its streaming
version, CONVS2S-VC (STREAM), is still better than BNE-
S2SMOL-VC, while its performance is degraded compared to
CONVS2S-VC (OFFLINE). However, although less frequent
than in BNE-S2SMOL-VC, speech dropouts were still ob-
served, which compromised the CER, especially in the hetero-
gender cases. On the other hand, VC-T (OFFLINE) attained
significantly better CER, even albeit the average MCD of the
three models was slightly worse than that of CONVS2S-VC
(OFFLINE). The proposed method achieved robust alignment, as
there were no speech skips in the evaluation data. The MCD and
CER of VC-T (STREAM) were worse than those of VC-T (OF-
FLINE), but the degree of deterioration was smaller and indeed
superior to those of the same streaming model, CONVS2S-
VC (STREAM). We performed the MAPSSWE significance
test [33], and the differences of the CERs between CONVS2S-
VC and VC-T in offline and streaming modes were statistically
significant, p < 0.001. Thanks to their robust alignments gen-
erated from our VC-T, it could better convert source speaker’s
speech to target speaker’s one than that of the CONVS2S-VC
while preserving linguistic information. Moreover, our VC-T
achieved the above results although the model size was much
smaller than CONVS2S-VC (see Table 1).

4.3. Subjective evaluations

We subjectively evaluated the naturalness of converted speech,
including RESYN. Seventeen listeners participated in the test,
and the evaluation used a mean opinion score (MOS) on a five-
point scale ranging from 5: very natural to 1: very unnatural.
Eight sentences were randomly selected for each VC’s gender
setting, with a total of 108 utterances across all methods.

Figure 3 shows the naturalness evaluation results. While
RESYN had a very high score, VC methods received lower
scores because the spectra were degraded from those of the orig-
inal speech. In particular, BNE-S2SMOL-VC scored the worst
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Figure 4: Subjective evaluation results of speaker similarity.

among all methods. As indicated by the CER evaluation in the
previous section, this was due to collapsed alignments leading
to unclear speech. CONVS2S-VC (OFFLINE) outperformed it,
but scored slightly lower than homo-gender conversions, pos-
sibly owing to increased difficulty in hetero-gender conversion.
Its streaming version, CONVS2S-VC (STREAM), was found to
be inferior to CONVS2S-VC (OFFLINE), especially in hetero-
gender conversions. We suspect this was because streaming op-
eration suffers if future context is missing, since CONVS2S-VC
only depends on the source speaker’s speech unlike our VC-T.
Thus, CONVS2S-VC (STREAM) led to produce unclear spec-
tra due to unstable alignments, got a lager confidence interval
than that of the others. Contrary to CONVS2S-VC (STREAM),
VC-T (STREAM) exhibited no remarkable degradation com-
pared to VC-T (OFFLINE). These results reveal that VC-T also
works robustly in streaming mode thanks to its robust align-
ment, which again reflects RNNT’s strength.

The similarity of converted speech to the target speaker
was compared to that of the reference GT by using degrada-
tion mean opinion score (DMOS) using a five-point scale rang-
ing from 5: very similar to 1: very dissimilar. Participants and
evaluation utterances were same as the naturalness evaluation.
Figure 4 presents the subjective evaluation results of speaker
similarity. The overall tendency was similar to that found in the
naturalness evaluation, with BNE-S2SMOL-VC exhibiting the
worst speaker similarity in all gender conditions. CONVS2S-
VC (STREAM) exhibited significant degradation. On the other
hands, VC-T (OFFLINE) roughly matched CONVS2S-VC (OF-
FLINE). Unlike CONVS2S-VC (STREAM), VC-T (STREAM)
was close to VC-T (OFFLINE), with almost no speaker similar-
ity degradation. These overall results demonstrate that our pro-
posal, VC-T, can attain robust alignments and improved natural-
ness and speaker similarity, especially under severe conditions
such as streaming inferencing and heterosexual conversions.

5. Conclusions
This work proposed a novel RNNT-based parallel VC, i.e., VC-
T, to obtain robust alignment. We also presented an alignment
design method that allows RNNT training to be used in VC. We
showed that the proposed VC achieved better CER than the con-
ventional seq2seq VC as well as contributing to the preservation
of speech content. Subjective evaluations also showed that the
proposed method achieved better naturalness in streaming mode
while achieving comparable speaker similarity to the conven-
tional streaming ConvS2S-VC. Our future works include 1) im-
proving VC-T performance with a pretraining approach [34],
2) extending the proposed method to many-to-many VC using
target-speaker embedding [35, 36] and 3) evaluating speed en-
hancement by utilizing a cache [37] or downsampling [38].
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