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Abstract
Connectionist Temporal Classification (CTC) model is a very
efficient method for modeling sequences, especially for speech data.
In order to use the CTC model as an Automatic Speech Recognition
(ASR) task, the beam search decoding with an external language
model like n-gram LM is necessary to obtain reasonable results.

In this paper, we analyze the blank label in CTC beam search
deeply and propose a very simple method to reduce the amount of
calculation resulting in faster beam search decoding speed. With
this method, we can get up to 78% faster decoding speed than
ordinary beam search decoding with a very small loss of accuracy
in LibriSpeech datasets.

We prove this method is effective not only practically by
experiments but also theoretically by mathematical reasoning. We
also observe that this reduction is more obvious if the accuracy of
the model is higher. 1

Index Terms: speech recognition, connectionist temporal
classification, beam search.

1. Introduction
Recently, there has been a remarkable improvement in Automatic
Speech Recognition (ASR) system thanks to the End-to-End
(E2E) training approaches. Especially, most ASR models have
one of three popular models as a base architecture, Connectionist
Temporal Classification (CTC) based model [1], recurrent neural
network (RNN) transducer-based model [2, 3] and Attention-based
Encoder-Decoder (AED) model [4, 5].

Unlike other models, CTC encodes the waveform with
sequential models like Recurrent Neural Network (RNN)[6] or
Transformer[7, 8] and outputs the probability or logit for each
sample frame. Since it does not have any decoder module itself and
assumes conditional independence with respect to time, it can make
the recognition result directly from its output. Moreover, this model
tries to learn the frame-wise phoneme representation, it originally
lacks temporal information. Therefore CTC-based model is often
used with beam search decoder and external Language Model (LM)
like n-gram LM[9, 7] or deep learning-based LM [10]. However,
even though the beam search decoder shows a better result, it
requires a longer decoding time. Both accuracy and decoding time
is too important to give up so usually we have to take the saturation
point between this trade-off.

There have been lots of efforts to reduce the beam search
decoding time so far. In [11], they introduced beam threshold
pruning which prunes some beam candidates with relatively low
scores and showed significant improvements in beam search speed.
[12] invented vectorized CTC which also shows big enhancements
in CTC-Attention-based beam search decoding while [13] proposed
an improved RNN-T beam search achieving decoding time

1Code and examples are available at
https://github.com/minkjung/blankcollapse
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Figure 1: Number of all consecutive frames for each size based on
the frame type in LibriSpeech test-other. The blank type means the
frame having the highest probability at the blank index while the non-
blank type is for the other cases. Most of the non-blank frames last
only one or two frames whereas blank frames seem to last longer.

reduction. Especially for CTC, there is a special label blank that
has multiple functions in the decoding process and the calculation
of CTC loss. [14, 15] proposed phone synchronous decoding
(PSD) in WFST which can skip the unnecessary decoding steps
whose blank probability is high enough. [16] also tried to reduce
frames with high blank probability using CTC posterior in RNN-T
model training. However, simply skipping blank frames should be
more careful when we consider the end-to-end character-based or
subword-based CTC models since the blank symbol is essential
for some cases. Some heuristics might avoid relevant problems in
PSD but they are not formulated well so far.

In this paper, we research the role of blank labels deeply in the
CTC beam search decoding and find an efficient way to remove
the redundant computations for the blank label. In conclusion,
we propose a blank collapse method for reducing the calculations
in decoding which results in the improvement of decoding speed
with negligible loss of accuracy. This also can be regarded as a
generalization from PSD for any decoding methods and the token
units, accompanied by mathematical consideration and empirical
results. This can be done without any further training and is
available on every CTC emission.

2. Analysis on CTC blank
In this section, we study the characteristics of CTC blank. Most
of the notations in this section follow those in [1].

2.1. Blanks on greedy decoding

Before introducing the method, we have to define the blank
frame. Let Nw(x)=y=(y1,y2,···,yT )∈RT×|L′| be the CTC
emission probability of a certain waveform x from CTC model
Nw where yt = (y1t ,y

2
t ,··· ,y|L

′|
t ) ∈ R|L′| is the probability at a

specified timestep t and L={w1,w2,···,w|L|} is a set of of labels,
L′=L∪{ϵ}, ϵ represents the blank label. CTC probability normally
can be obtained by applying the softmax function to the logit from
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the output of LSTM or Transformer trained with CTC loss. Each
wl can be a subword or character and we use a character dictionary.

If we want CTC greedy decoding (best path decoding), we
calculate the CTC output sequence as (argmaxk∈L′ ykt )

T
t=1 for

each timestep t and map the sequence with the mapping B in
[1]. B maps a sequence of CTC outputs to a label sequence by
removing all blanks and repeated labels from the sequence. Thus
by the definition of B, consecutive blanks play the same role as a
single blank. (e.g. B(aϵϵϵaϵb)=B(aϵaϵb)=aab). This property
motivates us to think that consecutive blank outputs could be
replaced by a single blank output. Also, we note that we can’t
ignore a series of blanks entirely because the existence of a blank
label plays an important role that used for representing a repetition
of the non-blank label. That’s why we have to leave at least one
blank label on behalf of the following blanks.

However, consecutive blanks at the beginning and the ending of
a sequence can be omitted entirely since they affect nothing to the
result of greedy decoding. In other words, in greedy decoding, we
are allowed to collapse the consecutive blanks to a single blank and
drop all blanks before the first non-blank output and after the last non-
blank output before decoding. More formally, we get the following.

Definition 1 G : RT×|L′| → {1, ..., |L′|}≤T is the CTC greedy
decoding or best path decoding given by

G(y)=B((argmax
k∈L′

ykt )
T
t=1)

for a CTC emission probability y. Êy is called a set of weak blank
frames of y defined as

Êy :={t≤T :argmax
k∈L′

ykt =ϵ}.

ϕ : P({1, ··· , T}) → P({1, ··· , T}) is a function called the
consecutive extension defined by

ϕ(E):={t∈E :(t−1∈E)∨(t=1)∨(s∈E,∀s≥t)}

By definition, it is straightforward that

G(y)=G((yt)t/∈ϕ(ÊX)) (1)

for a CTC emission probability y∈RT×|L′|. This means we may
drop frames included in ϕ(Êy) for CTC greedy decoding, even
though it is not useful in practice.

2.2. Blanks on CTC beam search

Equation 1 might not be valid for the CTC beam search decoding.
Let Ct be a set of beam candidates for timestep t. During CTC
beam search, we calculate Pb(c,t) and Pnb(c,t), blank probability
and non-blank probability respectively for each candidate c∈Ct

and each timestep t≤ T . As t proceeds, Pb and Pnb have to be
updated for the case of stay (c∈Ct+1) or extend to another path
(c′=c∪{k}∈Ct+1) according to the following rules:

Pb(c,t+1)=Ptot(c,t)·yϵt
Pnb(c,t+1)+=Pnb(c,t)·ykt , for k=c−1,

Pnb(c
′,t+1)+=

{
Pb(c,t)·ykt , if k=c−1,

Ptot(c,t)·ykt , otherwise,

(2)

where Ptot(c,t) =Pb(c,t)+Pnb(c,t) and c−1 represents the last
label of c. We use += instead of = for non-blank probability
because they can be added from another beam extension. CTC

beam search with a language model (LM) sorts the candidates by
their score defined by

Score(c,t):=Ptot(c,t)·λPLM(c,t). (3)

Here, PLM is a probability of LM and λ is the LM weight (other
hyper-parameters like a length penalty are not considered for
this time). As we see Equation 2 even though yϵt is the biggest
probability, ykt is applied to the non-blank probability which can
be accumulated as t goes. Thus collapsing weak blank frames is
too risky to collapse carelessly.

Consequently, we consider a stronger condition for the blank
frame which affects search little enough to collapse.

Definition 2 Eθ
y is called a set of strong blank frames or just

blank frames of θ for y defined by

Eθ
y :={t≤T :yϵt>θ}

where θ is called blank threshold.

Compared to weak blank frames, on blank frames of θ, it is
more confident for CTC model to predict that these frames are
for the blank label. Also, we can control the confidence by θ
for alleviating the difference from the result from original CTC
emissions. We propose our method with this definition in the next
chapter followed by its reasoning of it.

2.3. Comparison between blank and non-blank

Although other consecutive non-blank labels also might be collapsed
into a single label in greedy decoding, we don’t cover the case of
non-blank labels because non-blank labels (a) don’t occur often in
a row and (b) are riskier than blank labels.

As we can see in Figure 1, non-blank usually occurs at most
two frames consecutively whereas blank lasts longer once it occurs.
Our ultimate purpose is to reduce the decoding time and collapsing
consecutive non-blanks into a single non-blank will make little
difference in decoding time.

3. Blank collapse method
Now we propose a new method called blank collapse which drops
all collapsible frames before the CTC beam search in order to
reduce the size of decoding frames. Additionally we study the
theoretical reasoning behind this method, followed by its limitations
and implementation.

3.1. Definition of the method

Definition 3 (blank collapse) Fθ :RT×|L′|→R≤T×|L′| is called
blank collapse method with θ defined by Fθ(y) = (yt)t∈Iθ , for
a CTC emission probability y where Iθ := ϕ(Eθ

y)
C . We call

ϕ(Eθ
y) a set of collapsible frames of y with θ. The method using

Î=ϕ(Êy)
C as an index set is called weak blank collapse.

In other words, from the original CTC emissions, this method
drops the blank frames if they occur in the front, the last, or
following another blank frame. If we drop these collapsible frames,
CTC emissions will be compressed on its length, resulting in a
shorter beam search time.

PSD can be seen as a case with I= (Eθ
y)

C which collapses
every blank frame without the consecutive extension. This is
generally fine when the model uses phoneme as a unit but can cause
a significant difference otherwise according to Chapter 2.1.

This method certainly has to maintain the accuracy of beam
search as much as possible and this is accomplished by the
definition of blank frames. Since yϵt >θ, it automatically implies
ykt <1−θ, ∀k∈L. This means that we can assure that the change
of the non-blank probability has to be limited on blank frames while
the blank probability almost remains as same before for sufficiently
large θ. We can almost surely ignore these frames for this reason.
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3.2. Limitations of the method

Even though we can almost surely omit the consecutive blank
frames, this method always as a nonzero opportunity that could
harm the original result. No matter how θ is large, sometimes
consecutive blank frames can change the score quite a lot and
reverse the order. As Equation 2 shows, the non-blank accumulates
the score not only from its beam but also from another beam as they
merge their scores. Namely,

Pnb(c,t+1)+=Ptot(c:−1,t)·yc−1
t

where c−1 is the last label of the beam c and c:−1 := c−c−1. In
this equation, we can limit the scale of yc−1

t but we don’t know
how Ptot(c:−1, t) be larger than the other beam scores. Again,
every beam always has a chance to add a relatively large score from
another beam having a much higher score. LM score can cause
deepen this kind of side effect. Additionally, this tells us why we
collapse only blanks not non-blanks, mentioned in section 2.3 (b).
Collapsing frames with high non-blank emission probability can’t
limit Pnb which can cause serious distortion.

Nevertheless, this method is still effective making little
difference from the original. This is because the non-blank
probability still has an upper limit θ and proper beam threshold
pruning [11] prevents the beams from overspreading. Trivially, the
higher θ, the less distortion we could expect.

3.3. Implementation

To implement this method, we take advantage of a special utility
function unique_consecutive from PyTorch[17]. First, we get
a vector Φ where each value ϕt represents whether the frame at
timestep t belongs to the blank frames or not. This function returns
each unique value of a vector in order and how many times a such
value occurs consecutively. Using the returned value from this
function with a vector Φ, we can get u,c representing how many
blank/non-blank frames occur in a row. By these values, we can
leave only non-collapsible frames, Iθ.

This method is also compatible with timestep alignment [18]
since we can reorder the timestep alignment result with Iθ. The
detail method is described in algorithm 1. Figure 2 shows the
resulting image of collapsed CTC emission before and after the
blank collapse. Yellow represents high log probability and the top
row is for the blank label. As we can see, consecutive blank frames
disappear in collapsed emission. The total length of the collapsed
emission reduces from 169 to 102. The ground truth transcript is
I had that curiosity beside me at this moment.

Figure 2: Log probability of original/collapsed CTC emission for
a sample waveform in LibriSpeech.

4. Experiments
4.1. ASR model and datasets

We use the wav2vec 2.0 BASE / LARGE [7] model pre-trained on
the unlabeled audio data of LibriVox dataset [19] and fine-tuned

Algorithm 1: blank collapse

Data: CTC probability y∈RT×|L′|, blank threshold θ
Result: collapsed

probability Fθ(y)∈R≤T×|L′|, indices Iθ
Ψ←(ψ1,···,ψT ) where ψt=[yϵt≥θ], ∀t≤T ;
N0←0 // number of first blanks ;
u,c←unique_consecutive(Φ) ;
C← [];
k←0 ;
for i←1 to length(c) do

if ui is True then
if i = 1 then

N0←ci
else

if i = length(c) then
break

else
C← [C;ci]
// append number of blanks

end
end

else
C← [C;[1,···,1]] // append
1’s with number of non-blanks

end
k←k+ci

end
Iθ←cumsum(C)−1+N0 ;
Fθ(y)←(yt)t∈Iθ ;

on either 10 minutes, 100 hours, and 960 hours of transcribed
LibriSpeech dataset[20]. We do not fine-tune further and use a
CTC beam search decoder and 4-gram word LM provided by
torchaudio [21] which uses [22] for the decoder. Since this
decoder uses the logit of each beam for sorting beam candidates we
get the probability vector explicitly by the softmax function to apply
our method. Also, we try the beam threshold for γ=10,30,50.

Beam search decoding in an end-to-end manner uses 32 batch
size, 1,500 beams, LM weight 1.57, and length penalty -0.64 for
every experiment in order to simulate the experiments done by
[7]. For the analysis of their effectiveness, we use various beam
thresholds (γ) and blank thresholds (θ). Every experiment is done
on Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz.

We evaluate our method on LibriSpeech dev and test sets.
Firstly we check the proportion of collapsible frames to all frames
from a CTC emission with θ=0.999,0.99,0.9, and weak collapse
(Definition 2). As we can see at Table 1, about half of CTC
frames seem to be collapsible frames. Additionally, there are more
collapsible frames with the lower θ than the higher one, though the
gap between them is not that big. With this observation, we can
estimate that the CTC model predicts a certain frame to a blank
frame with very high confidence so that there are not many frames
with ambiguous certainty.

Table 1: The percentage of collapsible frames to all frames from CTC
emissions with wav2vec 2.0 LARGE model fine-tuned on 960 hours.

θ 0.999 0.99 0.9 weak
dev-clean 42.87 43.24 43.60 43.97
dev-other 42.98 43.77 44.51 45.20
test-clean 43.88 44.27 44.65 45.05
test-other 43.83 44.67 45.44 46.15
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Table 2: Word Error Rate (WER) (%) and Real Time Factor (RTF)
with its reduction ratio compared to the original on LibriSpeech
dev/test sets with γ =50. RTF includes the time spent executing
blank collapse which is less than a second.

θ dev-clean dev-other test-clean test-other

original
WER 1.781 3.509 2.031 3.681
RTF 0.278 0.290 0.279 0.291

0.999
WER 1.781 3.511 2.031 3.681
RTF 0.160 (0.42) 0.167 (0.42) 0.157 (0.44) 0.165 (0.43)

0.99
WER 1.783 3.513 2.029 3.683
RTF 0.160 (0.42) 0.165 (0.43) 0.156 (0.44) 0.163 (0.44)

weak
WER 1.866 3.749 2.109 3.834
RTF 0.158 (0.43) 0.161 (0.45) 0.154 (0.45) 0.159 (0.45)

4.2. Experimental results

Table 2 shows the accuracy and decoding time of each experiment
with γ = 50. As we can see, blank collapse with sufficiently
high θ shows a significant improvement in its decoding speed with
little difference in accuracy. For test-clean, θ=0.99 shows about
44% time reduction at most, which equals to about 78% speed
enhancement without any accuracy loss. Weak blank collapse shows
the best speed among all settings with not a small distortion on the
accuracy. Thus we may know that sufficient θ is safe for this method.

Interestingly, the reduction ratio of the decoding time seems to
be almost as much as the ratio of their frame sizes, 43.2% and 43.8%
respectively for test-other. However, this is not always true. As we
see in Figure 3, with γ=50, the reduction ratio of decoding time is
very similar to that of the size of frames. On the contrary, γ=10,30
shows a little bit less effect than γ=50. With this phenomenon, we
can estimate that the ratio of the time consuming on blank frames to
that on non-blank frames is relatively lower on the smaller γ. This
is because the beam threshold pruning with small γ reduces the time
more on the blank frames than the others. In other words, a higher γ
beam search takes longer time on blank frames than lower γ because
it has more candidates which must be pruned with the lower γ.

Table 3 shows the correlation between the model type and the
improvement of decoding time by blank collapse. The larger the
size of the model and the larger the dataset has been fine-tuned, the
improvement of the speed gets more evident. Actually, these two
factors directly affect the accuracy of the model, which is the key
factor in deciding how many frames can be collapsed out. This is
because the model with better accuracy tends to provide the CTC
emission probability with higher confidence and it makes the blank
probability high enough to be dropped. In other words, a good
model can tell whether a certain frame can be collapsed out or not.

Table 3: The percentage of decoding time improvement on various
model types, depending on the size of the model and the fine-tuning
dataset.

θ 0.999 0.99 0.9 weak
BASE / 10 min 23.56 28.22 31.54 35.81

LARGE / 10 min 35.95 39.05 40.34 40.59
LARGE / 100h 41.08 42.50 43.54 43.96
LARGE / 960h 43.30 43.99 45.36 45.70

4.3. Results on other decoder settings

In this section, we discuss proposed methods in two different
decoder settings on LibriSpeech test-other subset. Firstly, we decode
both vanilla frames and collapsed ones with a CTC beam search
decoder fused with a Transformer based LM. We use word-level
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Figure 3: Reduction ratio of the decoding time by blank collapse
in LibriSpeech test-other according to θ for each γ, compared to
the reduction ratio of the number of frames.

20 decoder layers Transformer for LM[9, 7] and the same decoder
in section 4.1. However, unlike the n-gram fusion which shows
significant improvement in inference speed with a negligible WER
degradation, there is only 1% gain in decoding time when θ is
0.999. This must be because most of the time is spent on huge LM
inference when decoding with a neural LM.

Nextly, we experiment with a WFST-based beam search
decoder [23]. We compile the same 4-gram LM in section 4.1
for a language graph and a CTC graph using k2 framework [24].
And we implement a WFST decoder using Kaldi [25]. We also
observe the improvement of decoding time by blank collapse with
WFST-based decoding. The reduction ratio of the decoding time
is about 33% with a very small loss in accuracy similar to the
case for the end-to-end decoder. Since the hyper-parameters of
the WFST decoder are different from the end-to-end decoder, its
improvement seems to be relatively low. If we find more optimized
hyper-parameters for the WFST decoder, we expect a similar speed
improvement to that of the end-to-end decoder.

4.4. Analysis of side-effects

It seems a bit strange that the reduction ratio on θ=0.9 is lower
than θ=0.999,0.99 at γ=50 as shown in Figure 3. It’s rare but
it also does happen on our internal dataset as well. We interpret that
over-collapsing might drop some good candidates unintentionally
which might lead to faster decoding with appropriate pruning for
the rest of the time.

Additionally, there are some cases in which the accuracy turns
out to be better when collapsed than the original. For example,
WER of test-clean with θ = 0.99 (2.029) is lower than that of
the original (2.031) though it is a small amount. We guess that
blank collapse may drop some frames having harmful information
potentially. However, such cases do not occur very often and the
difference is usually small throughout our experiments.

5. Conclusions

In this paper, we analyze the characteristics of the blank label which
is used as a special role in the CTC model. We define the blank
frame as a frame with a high blank probability yϵt and find out
that usually CTC emission has a bunch of blank frames. It is also
discussed that the blank frames can be omitted in CTC beam search
decoding in almost every case.

By this, we finally propose a new method called blank collapse
which intends to reduce the collapsible frames in order to improve
the decoding speed with minimal loss of accuracy. It is shown by
several experiments that this method actually can improve the decod-
ing speed. We also find that we can collapse more frames when the
model is well-trained on a dataset and with a higher beam threshold.

As future work, we expect that our method can be plugged into
any E2E ASR models using CTC loss as a regularization.

1352



6. References
[1] A. Graves, S. Fernández, F. Gomez et al., “Connectionist temporal

classification: labelling unsegmented sequence data with recurrent neural
networks,” in Proceedings of the 23rd international conference on Machine
learning, 2006, pp. 369–376.

[2] A. Graves, “Sequence transduction with recurrent neural networks,” ICML
workshop on representation learning, 2012.

[3] Q. Zhang, H. Lu, H. Sak et al., “Transformer transducer: A streamable
speech recognition model with transformer encoders and rnn-t loss,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 7829–7833.

[4] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,”
in 2016 IEEE international conference on acoustics, speech and signal
processing (ICASSP). IEEE, 2016, pp. 4960–4964.

[5] L. Dong, S. Xu, and B. Xu, “Speech-transformer: a no-recurrence
sequence-to-sequence model for speech recognition,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 5884–5888.

[6] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in Proceedings of the 31st International
Conference on International Conference on Machine Learning-Volume 32,
2014, pp. II–1764.

[7] A. Baevski, Y. Zhou, A. Mohamed et al., “wav2vec 2.0: A framework for
self-supervised learning of speech representations,” Advances in Neural
Information Processing Systems, vol. 33, pp. 12 449–12 460, 2020.

[8] A. Gulati, J. Qin, C.-C. Chiu et al., “Conformer: Convolution-augmented
transformer for speech recognition,” Proc. Interspeech 2020, pp. 5036–5040,
2020.

[9] G. Synnaeve, Q. Xu, J. Kahn, T. Likhomanenko, E. Grave, V. Pratap,
A. Sriram, V. Liptchinsky, and R. Collobert, “End-to-end asr: from
supervised to semi-supervised learning with modern architectures,” in
ICML 2020 Workshop on Self-supervision in Audio and Speech.

[10] A. Y. Hannun, A. L. Maas, D. Jurafsky, and A. Y. Ng, “First-pass large
vocabulary continuous speech recognition using bi-directional recurrent
dnns,” arXiv preprint arXiv:1408.2873, 2014.

[11] M. Freitag and Y. Al-Onaizan, “Beam search strategies for neural machine
translation,” in Proceedings of the First Workshop on Neural Machine
Translation, 2017, pp. 56–60.

[12] H. Seki, T. Hori, S. Watanabe et al., “Vectorized beam search for
ctc-attention-based speech recognition.” in INTERSPEECH, 2019, pp.
3825–3829.

[13] M. Jain, K. Schubert, J. Mahadeokar et al., “Rnn-t for latency controlled
asr with improved beam search,” arXiv preprint arXiv:1911.01629, 2019.

[14] C. et al., “Phone synchronous decoding with ctc lattice.” in Interspeech,
2016, pp. 1923–1927.

[15] Z. et al., “Tiny transducer: A highly-efficient speech recognition model
on edge devices,” in ICASSP 2021. IEEE, 2021, pp. 6024–6028.

[16] Y. Wang, Z. Chen, C. Zheng, Y. Zhang, W. Han, and P. Haghani,
“Accelerating rnn-t training and inference using ctc guidance,” in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2023, pp. 1–5.

[17] A. Paszke, S. Gross, F. Massa et al., “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024–8035.

[18] L. Kürzinger, D. Winkelbauer, L. Li, T. Watzel, and G. Rigoll, “Ctc-
segmentation of large corpora for german end-to-end speech recognition,”
in Speech and Computer, A. Karpov and R. Potapova, Eds. Cham:
Springer International Publishing, 2020, pp. 267–278.

[19] “https://librivox.org/.”
[20] V. Panayotov, G. Chen, D. Povey et al., “Librispeech: an asr corpus based

on public domain audio books.” IEEE, 2015, pp. 5206–5210.
[21] Y.-Y. Yang, M. Hira, Z. Ni et al., “Torchaudio: Building blocks for

audio and speech processing,” in ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2022, pp. 6982–6986.

[22] J. D. Kahn, V. Pratap, T. Likhomanenko, Q. Xu, A. Hannun, J. Cai,
P. Tomasello, A. Lee, E. Grave, G. Avidov et al., “Flashlight: Enabling
innovation in tools for machine learning,” in International Conference on
Machine Learning. PMLR, 2022, pp. 10 557–10 574.

[23] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers in
speech recognition,” Computer Speech & Language, vol. 16, no. 1, pp.
69–88, 2002.

[24] D. Povey, P. Zelasko, and S. Khudanpur, “Speech recognition with
next-generation kaldi (k2, lhotse, icefall),” Interspeech: tutorials, 2021.

[25] D. Povey, A. Ghoshal, G. Boulianne et al., “The kaldi speech recognition
toolkit,” in IEEE 2011 workshop on automatic speech recognition and
understanding, no. CONF. IEEE Signal Processing Society, 2011.

1353


