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Abstract
Many recent loss functions in deep metric learning are ex-
pressed with logarithmic and exponential forms, and they in-
volve margin and scale as essential hyper-parameters. Since
each data class has an intrinsic characteristic, several previous
works have tried to learn embedding space close to the real dis-
tribution by introducing adaptive margins. However, there was
no work on adaptive scales at all. We argue that both margin
and scale should be adaptively adjustable during the training.
In this paper, we propose a method called Adaptive Margin and
Scale (AdaMS), where hyper-parameters of margin and scale
are replaced with learnable parameters of adaptive margins and
adaptive scales for each class. Our method is evaluated on Wall
Street Journal dataset, and we achieve outperforming results for
word discrimination tasks.
Index Terms: deep metric learning, adaptive margin, adaptive
scale, acoustic word discrimination

1. Introduction
A successful approach to discriminating two spoken words
based on phonetic similarity is to measure the distance between
their neural representations, called acoustic word embeddings
(AWEs) [1, 2]. Learning AWEs is subsumed into deep metric
learning (DML), and the recent progress via introducing acous-
tically grounded word embeddings (AGWEs) [3, 4, 5, 6], which
encode phonetic contents of text inputs, is also related to the
great success of proxy-based DML [7, 8, 9]. Thus, finding the
optimal DML or proxy-based DML method can lead to further
improvement on acoustic word discrimination task.

In recent DML works that have focused on loss functions
while leaving the backbone network the same, the loss func-
tions are generally expressed as the sum of two terms making
anchor-positives closer and anchor-negatives farther. For each
term, logarithmic and exponential functions such as softmax,
softplus, and log-sum-exp have widely been utilized to handle
complicated relations within a batch [7, 8, 9, 10, 11]. They
involve margin and scale, where the margin determines bound-
aries on embedding space, and the scale controls the intensity
of punishment for violations. These hyper-parameters are uni-
formly tuned under the assumption that all classes have identi-
cal shapes of distributions. However, the consequently learned
embedding space cannot describe the real distribution perfectly
since each class has an intrinsic characteristic.

To address the problem, several methods have proposed in-
troducing an adaptive margin. In [12], a margin for Triplet loss
varies with the average distance between positive samples in an
anchor class. In [13], an auxiliary network generates margins
for classification loss from pre-trained semantic embeddings of
anchor and negative classes. Since these kinds of methods with

margins dependent on certain quantities are deficient in gener-
alization capability, an adaptive margin is defined for each class
as a learnable parameter that is jointly optimized with the net-
work [14, 15, 16, 17]. In [15, 16, 17], regularization is also em-
ployed to induce larger margins as they are preferred for higher
discriminability.

While research on the adaptive margin is active as such, an
adaptive scale is not considered at all, even though the scale
is also the essential component. Therefore, in this paper, we
try to apply the adaptive margin and adaptive scale together.
Specifically, we propose a new but straightforward method
called Adaptive Margin and Scale (AdaMS) to give flexibil-
ity in training dynamics of DML loss functions by replacing
hyper-parameters of margin and scale with learnable parame-
ters of adaptive margins and adaptive scales, respectively. Then
we provide a gradient-based analysis of how the margins and
scales change adaptively in affecting the training process si-
multaneously, which is described with examples. In addition,
following the argument of [18, 19] that DML loss functions are
sensitive to hyper-parameters, we impose non-linear constraints
on the intervals where the adaptive margins and adaptive scales
can vary.

Our AdaMS method is applied to the current state-of-the-art
proxy-based DML loss function, and then the learned embed-
ding space is evaluated on Wall Street Journal (WSJ) dataset for
word discrimination tasks. We demonstrate the effectiveness of
the proposed approach by achieving meaningful results outper-
forming all other methods.

2. Proposed method
In this section, we first review Asymmetric-Proxy (AsyP) loss
[9], which reported highly improved results, as the baseline to
which AdaMS is applied. We then describe our AdaMS method
and analyze the behaviors of adaptive margins and adaptive
scales separately based on their gradients for optimization and
an illustration.

2.1. Review of Asymmetric-Proxy loss

Let {(xi, ti, ci)|i = 1, 2, · · · , N} be a batch of N data tu-
ples, where xi is the AWE of the i-th speech segment, ti is the
AGWE of the text label, and ci is the word class index. Follow-
ing the general formulation for proxy-based DML in [9], loss
functions are given as the sum of the anchor-positive term LP

i

and anchor-negative term LN
i for the i-th anchor:

L =
1

N

N∑

i=1

(
LP

i + LN
i

)
. (1)

AsyP loss [9] uses two different functions for LP and LN
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Figure 1: Illustration of adaptive margins for positives (a)-(d) and negatives (e)-(h). Small circles are AWEs, stars are AGWEs, and
their colors represent distinct classes. The hardnesses are expressed by the thickness of edges. The black solid line indicates the
boundary determined by the adaptive margin. All dashes show their previous states, and the movements are represented by arrows.

to show that the optimal function making anchor and positives
closer has to be considered separately from one for anchor and
negatives to be farther. Specifically, AsyP loss takes the posi-
tive term from Multi-Similarity (MS) loss [10] and the negative
term from Binomial Deviance (BD) loss [11] with modification
in computing similarities by introducing proxies, and then com-
bines them. Each term is given as:

LP
i =

1

α
log

(
1 +

∑

j∈Pi

eα(λ−S(ti,xj))
)
, (2)

LN
i =

1

|Ni|
∑

k∈Ni

log
(
1 + eβ(S(xi,tk)−λ)

)
, (3)

where Pi = {j|cj = ci}, Ni = {k|ck ̸= ci}, and S(·, ·) de-
notes the cosine similarity. λ is a fixed margin, α > 0 is a fixed
scale for the anchor-positive term, and β > 0 is a fixed scale for
the anchor-negative term. Notice that the proxies t are utilized
as anchors in LP and as negatives in LN . The gradient of AsyP
loss with respect to S is then:

∂LP
i

∂S(ti,xj)
=

−eα(λ−S(ti,xj))

1 +
∑

j′∈Pi

eα(λ−S(ti,xj′ ))
, (4)

∂LN
i

∂S(xi, tk)
=

β

|Ni|
eβ(S(xi,tk)−λ)

1 + eβ(S(xi,tk)−λ)
. (5)

As described in [8, 9, 10], the magnitude of Equation 4 is
determined by the relative-hardness. It means, the gradient is
affected by not only the hardness of the similarity to be opti-
mized but also the intra-variance which is expressed as the sum
of hardnesses from the positive set. From the softmax-like form,
a hard positive (S < λ) in low intra-variance class has a high-
lighted gradient, whereas it has a smoothed gradient with others
in high intra-variance class.

For the case of Equation 5, the magnitude is determined by
the self-hardness [9, 10]. As it has the sigmoidal form, the gra-
dient is solely affected by the hardness of the similarity to be
optimized. Also, a hard negative (S > λ) has a not too much
gradient as well as its gradient becomes significantly lower af-
ter pushed away. This property helps the global structure of
embedding space to be converged.

However, while AsyP loss takes advantage of MS loss, BD
loss, and the concept of proxy-based DML, it cannot account for
the effects of hyper-parameters that vary over training because
their values are fixed.

2.2. AdaMS: Adaptive Margin and Scale

Our AdaMS is applied to improve AsyP loss while remaining
its inherent advantages. In order to resolve the limitations, we
set the following requirements.

• Like the scales α and β, we need two separate margins for
positive and negative terms.

• Margins and scales have to be defined for each class since
unified values cannot model various data distributions reflect-
ing their intrinsic characteristics.

• Margins and scales should be adjustable according to how
well the training optimizes local and global structures on em-
bedding space.

Our main idea satisfying these requirements is to replace
the fixed valued hyper-parameters in Equation 2 and Equation 3
with class-dependent learnable parameters for positive and neg-
ative terms separately. Similarly to [15, 16, 17], we also employ
regularization for margins. Resulting loss terms are given as:

LP
i =

1

sg[αi]
log

(
1 +

∑

j∈Pi

eαi(λ
P
i −S(ti,xj))

)
− ωλP

i , (6)

LN
i =

1

|Ni|
∑

k∈Ni

log
(
1 + eβi(S(xi,tk)−λN

i )
)
+ ωλN

i , (7)

where sg[·] is a stop-gradient operation that prevents the gra-
dient in Equation 4 from changing into an unwanted form, ω
controls the balance of regularizations, and λP

i , λN
i , αi, βi de-

note the adaptive margins and adaptive scales for class ci.

2.2.1. Behavior of adaptive margin

To see how the adaptive margins affect the training, we need to
analyze the gradients with respect to λP

i and λN
i given as:

∂LP
i

∂λP
i

=

∑
j∈Pi

hP
ij

1 +
∑

j∈Pi

hP
ij

− ω, (8)

∂LN
i

∂λN
i

= − βi

|Ni|
∑

k∈Ni

hN
ik

1 + hN
ik

+ ω, (9)

where hP
ij = eαi(λ

P
i −S(ti,xj)) and hN

ik = eβi(S(xi,tk)−λN
i )

denote hardness metrics for class ci and given similarity. hP
ij

and hN
ik have exponentially large values for hard inputs, other-

wise they become significantly smaller, close to 0.

If we ignore −ω in Equation 8, then ∂LP
i

∂λP
i

> 0 and its mag-
nitude depends on the number of hard positives. As illustrated
in Figure 1.(a)-(d), high intra-variance causes a large gradient,
so λP

i decreases. Then with the more relaxed boundary, some
less-hard positives, which were not able to meet the margin be-
fore, can come into the area. It leads the model to focus on
harder positives. If most positives are well distributed inside the
boundary, then the regularization −ω becomes dominant and
λP
i increases. With the more compact area, hard positives may

appear again, then the whole process is repeated.
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Likewise, if we ignore ω in Equation 9, then ∂LN
i

∂λN
i

< 0 and
its magnitude gradually increases when hard negatives exist. As
illustrated in Figure 1.(e)-(h), when negatives cross the anchor’s
boundary, they cause a large gradient, so λN

i increases. Then
the model narrows the area and pushes the remaining harder
negatives outside. If there is no violations, then the regulariza-
tion ω becomes dominant and λN

i decreases. By seeking hard
negatives again in the broad area, we can achieve higher inter-
variance resulting in higher discriminability.

2.2.2. Behavior of adaptive scale

Once the adaptive margin determines the boundary, the adap-
tive scale adjusts how strictly to punish the violations. Thus
their behaviors are highly associated with each other. It can be
figured out from the gradients with respect to αi and βi:

∂LP
i

∂αi
=

1

αi

∑
j∈Pi

(λP
i − S(ti,xj))h

P
ij

1 +
∑

j∈Pi

hP
ij

, (10)

∂LN
i

∂βi
=

1

|Ni|
∑

k∈Ni

(S(xi, tk)− λN
i )hN

ik

1 + hN
ik

. (11)

If some positives violate the margin (S < λP
i ) resulting

in ∂LP
i

∂αi
> 0, we can regard the distribution of the class ci

as less-trained yet or inherently difficult to learn. In this case,
αi decreases to smooth the level of hP and prevent the model

from focusing on only a few hard positives. If ∂LP
i

∂αi
< 0 that

means there are nothing or not many hard positives, then αi

increases to highlight hP for the outliers and suppress hP oth-
erwise. These behaviors resemble the property of the relative-
hardness of Equation 4, so they jointly boost the discriminative
training.

The summation of Equation 11 can be divided into the cases
of hard negatives (S > λN

i ) and the others. Since hN
1+hN ≃ 1

for the hard negatives, the sign of the gradient is determined by
most negatives outside the anchor’s boundary. If their hard-
nesses are not low enough for a reason such that the global
structure of embedding space approximated by the set of prox-

ies [7] is not constructed yet, then ∂LN
i

∂βi
< 0 and βi increases.

Also it is accompanied by an increase in λN
i . Thus highly vio-

lating proxies are pushed away, which helps establish the global

structure. Otherwise, βi decreases with ∂LN
i

∂βi
> 0 so that the

model can be converged.

2.2.3. Range constraints

It is known that the quality of the resulting embedding space is
sensitive to the setting of fixed hyper-parameters [18, 19]. Sim-
ilarly, if adaptive margins and adaptive scales are implemented
without any constraint on their range, they can lead to unstable
training. So we impose hyperbolic tangent constraints as:

λP
i,const = λ0(1 + tanh(λP

i ))

λN
i,const = λ0(1 + tanh(λN

i ))

αi,const = α0(1 + δα tanh(αi))

βi,const = β0(1 + δβ tanh(βi))

(12)

where δα and δβ control the interval where adaptive scales can
vary. Finally, we apply these constrained adaptive margins and
constrained adaptive scales to Equation 6 and Equation 7.

3. Experiments
In order to demonstrate the effectiveness of AdaMS, we evalu-
ate the learned AWEs and AGWEs on acoustic word discrim-
ination task and cross-view word discrimination task by using
Average Precision (AP) metric [3, 4, 5, 6, 9] in percent (%).

The word-level data is drawn from WSJ dataset [20] with
forced alignment; the train/dev/test sets consist of 639501/
16839/18274 samples from 13386/3289/3239 unique words.
These splits can be obtained through the WSJ recipe officially
distributed by the Kaldi toolkit [21]. Then we follow the same
feature extraction process as [9].

All methods are implemented with PyTorch [22]. Details
that are not mentioned in this paper follow the default set-
ting of PyTorch. For AWEs and AGWEs, we use two 2-layer
BLSTM with 512 units per direction as embedding networks
(with dropout of 0.4 only for AWEs) and concatenate the last
outputs respectively, so x, t ∈ R1024. We use Adam optimizer
[23] with learning rate of 10−4 for the embedding networks and
10−5 for the adaptive margins and adaptive scales.

We set λ = 0.5, α = 2, β = 50 for the fixed hyper-
parameters and for the initial values of the learnable parameters.
In the case of using the range constraints as Equation 12, we
initialize the adaptive margins and adaptive scales to 0 before
applying the constraints. With λ0 = 0.5, α0 = 2, β0 = 50,
δα = 0.5, δβ = 0.1, the constrained parameters have the same
initial values with non-constrained ones. All these values are
chosen by conducting a grid search with the dev set. Note that
ω has to differ according to the batch size N . We set N = 256,
and then ω = 0.01 works well.

3.1. Comparison with other methods

We compare the performance of our AdaMS with other meth-
ods including MV Triplet loss [3], MS loss [10], BD loss [11],
and the baseline AsyP loss [9]. As originally MS loss and BD
loss are not designed for proxy-based DML methods, so we re-
formulate them as [9]. All experiments are repeated 5 times and
we report the mean values with standard deviations.

Table 1: Word discrimination results on WSJ test set. The sub-
scripts indicate the position of proxies: ‘P/N’ for AGWEs as
positives and negatives, ‘A’ for AGWEs as anchors.

Methods Acoustic
AP

Cross-view
AP

Contrastive 47.9 (6.86) -
Triplet 81.2 (1.34) -
MV Triplet 83.3 (0.72) 91.0 (0.56)
Proxy-NCAP/N 86.9 (0.78) 92.7 (0.52)
Proxy-NCAA 81.5 (0.52) 89.4 (0.40)
Proxy-BDP/N 90.5 (0.40) 95.4 (0.24)
Proxy-BDA 90.8 (0.52) 95.6 (0.27)
Proxy-MSP/N 90.8 (0.56) 96.3 (0.30)
Proxy-MSA 88.1 (0.67) 96.4 (0.13)
AsyP 92.1 (0.43) 96.3 (0.23)
AsyP + AdaMS (Ours) 92.7 (0.13) 96.7 (0.12)

The comparison results are summarized in Table 1. It can
be seen that our method outperforms all others on both tasks.
In [9], AsyP loss improved in Acoustic AP compared to other
methods. However, the performance in Cross-view AP was sat-
urated at some level showing little difference with Proxy-MSP/N
and Proxy-MSA losses. When we apply our AdaMS method
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to AsyP loss, then we can get extra improvements not only in
Acoustic AP but also in Cross-view AP.

3.2. Discriminability of unseen words

In practical situations of open-vocabulary wake-up word detec-
tion or query-by-example spoken term detection, which mainly
utilizes AWEs, enrolled or queried word is highly probable to
have been unseen at the training. Therefore, evaluating the dis-
criminability of unseen words is practically meaningful.

In the test set, there are 402 unseen word classes. To mea-
sure the performance in this case, AP for the acoustic word dis-
crimination task is computed by using the samples of unseen
words only as the query. The whole test set is used as the re-
trieval set as the same. To simulate the realistic scenario, the
cross-view task is not considered since it is plausible that no
text labels are provided for unseen words.

Table 2: Acoustic word discrimination results with unseen word
queries on WSJ test set.

Methods Acoustic
AP

AsyP 63.5 (1.72)
AsyP + AdaMS (Ours) 72.8 (2.83)

The results are given in Table 2. The relative improve-
ment about 14.6% clearly demonstrates the outperforming per-
formance of our AdaMS method.

3.3. Ablation study

To investigate the importance of each part of the AdaMS, we
conduct an ablation study as shown in Table 3.

Table 3: Ablation study.

Methods Acoustic
AP

Cross-view
AP

AsyP (baseline) 92.1 (0.43) 96.3 (0.23)
+ adaptive margin 92.3 (0.37) 96.4 (0.31)

+ range constraints 92.3 (0.22) 96.3 (0.21)
+ adaptive scale 91.2 (0.43) 95.9 (0.22)

+ range constraints 91.7 (0.38) 96.1 (0.21)
+ both 91.8 (0.21) 96.3 (0.11)

+ range constraints (Ours) 92.7 (0.13) 96.7 (0.12)

First, we apply the adaptive margin and adaptive scale sep-
arately. Similar to [15, 16, 17], the adaptive margin shows its
own effectiveness. However, applying the adaptive scale alone
leads to a performance degradation. The reason we can think
of is that the decision boundaries are eventually determined
by the margins, so if the margins are fixed, then the varying
scales rather make the training unstable. Even if we employ
both methods, the result gets better but is still lower than the
baseline. Here, we can understand that the stability of the train-
ing is related to the adaptive scale, and this discovery raises the
necessity of introducing the range constraints.

When we use the range constraints to the method applying
the adaptive margins alone, there is almost no change. On the
other hand, there is an improvement in the adaptive scales with
the range constraints. But it seems there is a limit as well since
the adaptive margins are not applied together. Finally, when
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0.501

(a) λP
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(c) αbehavior
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Figure 2: Visualization of how the adaptive margins and adap-
tive scales for the word ‘behavior’ change during the first
epoch. Red horizontal lines indicate the initial values.

we apply the range constraints to the method with the adaptive
margins and adaptive scales, we get the best result.

In sum, the class-dependent adaptive margins are effectual
by themselves, as [15, 16, 17]. To achieve more improvement,
we have to apply the adaptive margins and adaptive scales to-
gether, but the range constraints are crucial in this case.

3.4. Visualization

In order to see the actual behavior of the adaptive margins and
adaptive scales described in Sec.2.2, all values are recorded dur-
ing the training. Particularly, we focus only on the first epoch.
Because all model parameters rapidly move to the nearest op-
tima with the steepest gradients at the beginning, we can ob-
serve their distinct behavior.

We select the word class ‘behavior’ and visualize its val-
ues in Figure 2. In this example, as we expected, λP is highly
correlated with α, and they decrease until a particular moment
and then increase. Also, though λN fluctuates a bit, it shows a
similar trend with β, where they increase at first and then de-
crease. The fluctuation of λN can be interpreted that the de-
velopment of the global structure of the embedding space at the
early stage of the training incurs violations and punishing fre-
quently.

4. Conclusion
In this paper, we have proposed a novel AdaMS method to
address the problem of fixed hyper-parameters in DML loss
functions. It involves simple modification by replacing hyper-
parameters of margin and scale with range constrained learnable
parameters of adaptive margins and adaptive scales. Since each
class can approximate its real distribution closely, we can con-
struct more discriminative embedding space. The outperform-
ing results on word discrimination tasks demonstrate the effec-
tiveness of our method. In addition, through the ablation study,
we have demonstrated that applying adaptive margins and adap-
tive scales together is meaningful and that the range constraints
need to be considered at the same time.
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