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Abstract
Speech/voice disorders are common in People Living with

Dementia (PLwD). Fluctuations in speech quality can serve as
biomarkers of cognitive deterioration but there is a gap in auto-
mated assessment of speech collected in unstructured environs.
Our organisation has deployed Alexa in the households of 14
PLwD to track self-reported mental and physical state as well
as use of language.

In this work, we present a case study analysing highly vari-
able speech over time, providing potential insights into cogni-
tive changes. Alexa data gathered from the participant was man-
ually annotated with speech assessment labels. Those labels are
matched to openSMILE features by performing a feature impor-
tance analysis to isolate critical features that contribute to the
perceptual ratings. We can assess phonation with a F1-score of
0.55, breathiness: 0.71, roughness: 0.60, asthenia: 0.65, strain:
0.74. This work is a first step towards automatic speech assess-
ment to monitor cognitive impairment over time.
Index Terms: speech recognition, human-computer interac-
tion, computational paralinguistics

1. Introduction
Dementia is a leading cause for disability and dependence in el-
derly across the world. People living with dementia (PLWD) re-
quire social support, day care facilities and supported residences
with advancing illness. Cognitive decline in dementia-related
neuro-degenerative conditions (e.g.Alzheimer’s Disease) often
manifest in speech and language disorders [1, 2] (See [3] for
a review of language impairments) , which can appear years
before other symptoms of cognitive deterioration [4, 3]. Map-
ping pre-symptomatic cognitive decline through non-invasive
bio-markers holds significant promise for early detection and
clinical monitoring of disease progression. Moreover, identify-
ing relevant acoustic features indicative of decline supports au-
tomatic assessment of changes in speech quality over extended
periods of time enables detecting disordered speech to trigger
alert systems for support of populations at risk [5].

Speech/voice is typically assessed by a speech and lan-
guage therapist, or computationally when subjects periodically
repeat the same sentences. Voice disorders detection has been
tackled using different approaches, including vocal hyperfunc-
tion, acoustic analysis approaches employing neural maps [6],
non-linear measures [7], and voice source-related properties [8].
Those works used audio recordings from a single session. How-
ever, speech and voice disorders manifest themselves with vary-
ing severity on a day to day basis and that variability cannot be
fully captured in a single session. Diagnosis and assessment
of these disorders would benefit from unobtrusively monitoring
and evaluating vocal features, from daily-life interactions. Con-

versational agents offer the potential of triggering automated as-
sessment in this regard. Existing work has attempted to tackle
this problem and through an ambulatory device [9], however
this approach still requires employing an accelerometer on the
neck surface to estimate glottal airflow.

One way in which speech and language therapists assess
dysarthria is through auditory perceptual ratings of speech
across the different speech subsystems of respiration, phona-
tion, resonance, articulation and prosody. The phonatory as-
pects of speech (i.e. voice) can be assessed using the GRBAS
scale [[10], in which phonation is described in terms of Grade
(overall severity of dysphonia), Roughness, Breathiness, Asthe-
nia and Strain. There have been a few attempts to match compu-
tational features to the GRBAS perceptual assessment. Jalalina-
jafabadi et al. used objective features extracted with the GPSP
and Praat softwares to predict the GRBAS scale using Multiple
Linear Regression and K-Nearest-Neighbour-Regression [11].
Saenz et al. also predicted the GRBAS attributes from MFFC
using Learning Vector Quantization and a K Nearest Neighbour
(KNN) classifier [12].

There are, to our knowledge, no studies on monitoring
speech from disordered speech from unconstrained data col-
lected in the field. The increasing popularity of commercial
conversational agents such as Amazon Alexa or Google Home
creates a unique opportunity to unobtrusively collect and mon-
itor speech for populations with cognitive impairments. How-
ever, processing this data presents new challenges due to the
unconstrained nature of the interactions and environmental fac-
tors, such as background noise and the need to process state-
ments which may not be under the control of clinicians.

In this work, we identify acoustic features that contribute to
different components of perceptual speech assessment, focusing
particularly on phonatory aspects of speech. We present here a
detailed case study of long-term speech collected by Alexa for
a participants with significant speech impairments.

2. Material and Methods
2.1. Dataset

The UK-DRI CR&T has deployed Alexa voice assistants in the
household of 14 PLwD as a part of a larger home study. An
original ’check-in’ app for PLwD to perform a daily health in-
terview was developed as a part of the study. The app asks
participants questions about how they feel (e.g. agitated, anx-
ious or worried), how they slept and their upcoming plans for
the day. The household inhabitants are also free to engage in un-
constrained interactions with Alexa and use it for entertainment,
information seeking, etc. In our study, a household is usually
composed of a PLwD and carer (usually a spouse). They oc-
casionally receive visitors, but visitor data was not assessed in
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this work. The study received ethical approval from the Surrey
Borders Research Ethics Committee.

Data was pre-screened and any duplicate or recording that
didn’t contain speech directed towards Alexa was discarded.
The full dataset consists of 12k audio recordings from English
speakers (7046 from PLwD) collected over 6 months between
2021 and 2022. This dataset can be shared as extracted features
upon reasonable request.

In this case study, we focus on one household, which had
1272 audio recordings, including 174 from the carer, 1017 from
the PLwD and 81 from visitors. This data was acquired between
September 8th 2021 and July 29th 2022. Although Alexa pro-
vides a transcript of the interaction, it was re-transcribed by our
team as speech-to-text was often misunderstood: we found that
for this participant the transcription was wrong 36.67% of the
time.

Alexa provides us with audio recordings of a duration of
maximum 8 s. For the purpose of this analysis, we will only
considers recording where only the PLwD is talking. Each
recording was manually annotated with several labels: who is
speaking, topic of the interaction, speech assessment (respira-
tion, phonation, resonance, articulation and prosody) and dys-
fluencies (hesitations, interjections, word/sentence repetitions).
The labels have binary values to indicate absence/presence of an
anomaly, except phonation which is rated between 0 and 3 for
severity. Labelling the data presented some challenges, notably
due to short speech samples (especially for features such as res-
piration), which is why for this exploratory study the presence
or absence of a feature has been recorded rather than attempting
a more robust or in-depth description.

The second author, a speech and language therapist, trained
the first author in perceptual speech assessment. The first au-
thor annotated all the data and the second author annotated
10% of it for verification purposes. Overall inter-rater reliability
was 88%, with 73% for the phonation severity score, 82% for
breathiness, 90% for roughness, 83% for asthenia and 83% for
strain. For each file, we extract 65 openSMILE features (ver-
sion 2.4.1) [13, 14], using the low level Compare 16 feature set
[15] (See [16] for a more detailed description of the features).
Each recording is therefore divided into 60 ms chunks and fea-
tures extracted for each chunk, we aggregate those features by
computing the average and standard deviation for each file. Our
feature vector is the concatenation of all the averages and stan-
dard deviations and therefore has dimension 130. Features are
normalised between 0 and 1.

All source code required for conducting experiments will
be made publicly available upon publication of the paper with a
license that allows free usage for research purposes.

2.2. Participant Information

Our participant was 83 years old, diagnosed with mixed
Alzheimer’s and vascular type dementia in 2016. She addition-
ally had a background of chronic hypertension, hypothyroidism,
hypercholesterolaemia, pre-diabetes, diverticulosis, and malig-
nancy of the colon. During the course of this study she was also
suffering from lung cancer. From the autumn of 2021 she was
suffering with variable dysphonia likely as a result of tumour
compression of the recurrent laryngeal nerve.

2.3. Labels

The audio recordings of the PLwD were annotated with the fol-
lowing labels for speech assessment:

Figure 1: Daily average of perceptual speech assessment. Left:
in blue: phonation. Right: in blue breathiness, orange: rough-
ness, red: asthenia, green: strain. The higher the value, the
higher the severity of impairment.

• Respiration (5.5% of files): signs indicating possible re-
duced respiratory support for speech, e.g. shorter utterances
per breath/additional breaths taken mid-phrase, lower volume
or increasing dysphonia at the end of each breath.

• Phonation (88.5% of files): Rated between 0 and 3 by
level of severity (unimpaired, mildly impaired, moderately
impaired, severely impaired). In addition, the presence or
absence of the following phonatory features was recorded:
breathiness (73.4% of files), roughness (64.5% of files), as-
thenia (49.8% of files) and strain (37.2% of files)

• Resonance (2.0% of files): presence of hypernasality (ex-
cessive nasal resonance) or hyponasality (reduced nasal res-
onance).

• Articulation (5.1% of files): presence of articulatory errors
or disordered sounding articulation, e.g. imprecise articula-
tion or perceptually excessively effortful articulation.

• Prosody (5.1% of files): presence of unusual speech rhythm,
melody, intonation, or stress patterns.

• Language error (1.5% of files): presence of an apparent
word or syntax error

• Hesitation (12.5% of files): pauses of varying length that
occur mid-utterance.

• Disfluencies:

– interjection (5.1% of files): extra sounds, syllables, or
words often when thinking about what to say. Common
interjections include: uh, um, well, like, you know, etc.

– word repetitions (0.8% of files): e.g. I (pause) I want.
– Partial or full phrase repetitions(0.6% of files): e.g. I like

(pause) I like my new teacher.
– revisions (0.9% of files): e.g. I like cake (pause) cookies.

In this paper, for the sake of space, we will focus on
the phonation labels, i.e overall phonation score, breathiness,
roughness, asthenia and strain (See Fig. 1).

2.4. Classification Network

Our classification network is implemented with Keras and is
composed of four fully connected layers with relu activation,
1024, 256, 64 and 16 neurons each and l2 regularisation (0.001),
each followed by a Dropout layer (0.1), followed by a classi-
fication layer with sigmoid activation (softmax for the phona-
tion component). Imbalance is addressed by setting appropriate
class weights. We employ the binary cross-entropy loss. We
train each model for a hundred epochs with early stopping cri-

4509



teria of 5 and perform 5-fold cross-validation. We report the
average F1-score as our evaluation metric.

3. Results
In this section, we present classification results, using all the
available acoustic features, and after feature selection. Finally
we discuss feature importance.

3.1. Classification

Our classification network is able to recognise phonation
anomalies with a F1-score of 0.52, breathiness with a F1-score
of 0.74, roughness with a F1-score of 0.64, asthenia with a F1-
score of 0.68, strain with a F1-score of 0.69.

3.2. Features Selection

Since we have a high number of features (65x2), we first iden-
tify which ones are relevant for each subjective assessment. We,
therefore, run a Kruskal-Wallis statistical test on each acous-
tic feature, to identify which ones are significantly different be-
tween our classes. We set the significance threshold to 0.001.
This analysis identified 14 significantly different features for
breathiness, 10 for roughness, 29 for asthenia, 57 for strain
and 56 for phonation. Applying step backward feature selection
leads to keeping 9 features for breathiness, 5 for roughness, 19
for asthenia, 57 for strain and 39 for phonation. After feature se-
lection, we can recognise phonation anomalies with a F1-score
of 0.55, breathiness with a F1-score of 0.71, roughness with a
F1-score of 0.60, asthenia with a F1-score of 0.65, strain with a
F1-score of 0.74.

3.3. Feature Importance

To evaluate feature importance, we evaluate performance of the
trained network with each feature column replaced, one by one,
by Gaussian noise and observe how it fares compared to the
best performance. This was also evaluated using 5-fold cross-
validation.

3.3.1. Phonation

The features contributing to the Phonation com-
ponent are the F0final, jitterLocal, shimmerLocal,
logHNR, audspec lengthL1norm, pcm RMSenergy,
audSpec Rfilt (components 0, 4, 5, 6, 7, 16,
22, 24, 25), pcm fftMag spectralRollOff25.0,
pcm fftMag spectralRollOff75.0, pcm fftMag spectralFlux,
pcm fftMag psySharpness, pcm fftMag spectralCentroid,
pcm fftMag spectralEntropy, mfcc (components 1, 3, 4,
5, 6, 7, 8, 9, 10, 14). The most important feature are the
pcm fftMag spectralRollOff75.0 and the 4th component of
mfcc (See Fig. 2).

3.3.2. Breathiness

The features contributing to breathiness are the 6th, 7th, 15th
and 16th components of audSpec Rfilt, and the 4th, 5th and 7th
components of mfcc. The most important feature in evaluating
breathiness is the 7th component of mfcc (See Fig. 3).

3.3.3. Roughness

Features contributing to roughness are the 4th, 5th and 7th com-
ponents of audSpec Rfilt, and audspecRasta lengthL1norm.

Figure 2: Performance (F1-score) when classifying phonation
and replacing each feature by Gaussian noise, one by one.

Figure 3: Performance (F1-score) when classifying breathiness
and replacing each feature by Gaussian noise, one by one.

The most important feature are the 4th and 5th components of
audSpec Rfilt (See Fig. 4).

Figure 4: Performance (F1-score) when classifying roughness
and replacing each feature by Gaussian noise, one by one.

3.3.4. Asthenia

Features contributing to asthenia are the audSpec Rfilt (compo-
nents 5, 7, 8, 10, 11, 14, 15, 16, 17, 18), 3rd, 4th, 7th, 9th and
10th components of mfcc, and pcm fftMag spectralFlux. The
most important features in identifying asthenia is the 9th com-
ponent of mfcc (See Fig. 5).

3.3.5. Strain

Features contributing to the strain are F0final, voicing-
FinalUnclipped, jitterLocal, jitterDDP, shimmerLocal,
audspec lengthL1norm, pcm RMSenergy, audSpec Rfilt (com-
ponents 0, 1, 20, 21, 22, 23, 24, 25), pcm fftMag fband1000-
4000, pcm fftMag spectralRollOff[25.0, 50.0, 75.0, 90.0],
pcm fftMag spectralFlux, pcm fftMag spectralCentroid,
pcm fftMag spectralEntropy, pcm fftMag psySharpness,
pcm zcr, mfcc (components 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 12, 13, 14). The most important feature are the
pcm fftMag spectralRollOff75.0 and the 13th component of
mfcc (See Fig. 6).
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F0final The smoothed fundamental frequency contour
voicingFinalUnclipped The voicing probability of the final fundamental frequency candidate. Unclipped means,

that it was not set to zero when is falls below the voicing threshold
jitterLocal The local (frame-to-frame) Jitter (pitch period length deviations)
jitterDDP The differential frame-to-frame Jitter (the ‘Jitter of the Jitter’)

shimmerLocal The local (frame-to-frame) Shimmer (amplitude deviations between pitch pe- riods)
logHNR log harmonics-to-noise ratio

audspecRasta lengthL1norm Relative Spectral Transform applied to Auditory Spectrum and the magnitude of the L1 norm
audspec lengthL1norm magnitude of L1 norm of the auditory spectrum

audSpec Rfilt Relative Spectral Transform (RASTA)-style filtered applied to Auditory Spectrum
pcm RMSenergy Root-mean-square signal frame energy

pcm fftMag fband1000-4000 fft magnitude of this frequency band
pcm fftMag spectralFlux spectral flux of the magnitude of the FFT

pcm fftMag spectralRollOff spectral roll-off points of the magnitude of the FFT
pcm fftMag spectralCentroid spectral centroid of the magnitude of the FFT
pcm fftMag spectralEntropy spectral entropy of the magnitude of the FFT
pcm fftMag psySharpness Psychoacoustic sharpness of the magnitude of the FFT

mfcc Mel-Frequency cepstral coefficients
pcm zcr Zero-crossing rate of time signal (frame-based)

Table 1: Explanation of the openSMILE features selected in this paper

Figure 5: Performance (F1-score) when classifying asthenia
and replacing each feature by Gaussian noise, one by one.

4. Conclusions

In this work, we perform a feature importance analysis to match
perceptual speech assessment to acoustic features for phona-
tion ratings. Isolating those acoustic features will allow us to
devise a speech quality index to automate speech assessment.
Performance is lower for the Phonation rating, this can proba-
bly be explained by the difficulty to properly label severity on
a 4-point scale. Indeed, when considering a binary label (ab-
sence/presence of phonation anomaly), the network performs
much better: F1-score of 0.86 on the 5-fold cross-validation.

This work focuses on a case study of one participant with a
lot of recordings and variable speech quality. In future works,
we will continue our longitudinal analysis of this data. We hope
that this research will pave the way towards automatic speech
assessment. Since we have now isolated relevant features for
each scale, we will also develop a computational voice quality
index. Limitations of this work are related to the unconstrained
nature of the data, i.e. short utterances and sometimes noisy
environment. This work is the first stepping stone to automat-
ing speech assessment and designing a monitoring system for
speech impairments and subsequently for cognitive decline. It
also explores the possibility of fully exploiting the opportunity
created by voice assistants.

Figure 6: Performance (F1-score) when classifying strain and
replacing each feature by Gaussian noise, one by one.
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