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Abstract
Lifelong audio feature extraction involves learning new

sound classes incrementally, which is essential for adapting
to new data distributions over time. However, optimizing the
model only on new data can lead to catastrophic forgetting of
previously learned tasks, which undermines the model’s abil-
ity to perform well over the long term. This paper introduces a
new approach to continual audio representation learning called
DeCoR. Unlike other methods that store previous data, features,
or models, DeCoR indirectly distills knowledge from an earlier
model to the latest by predicting quantization indices from a de-
layed codebook. We demonstrate that DeCoR improves acous-
tic scene classification accuracy and integrates well with con-
tinual self-supervised representation learning. Our approach in-
troduces minimal storage and computation overhead, making it
a lightweight and efficient solution for continual learning.
Index Terms: continual learning, representation learning,
sound classification

1. Introduction
Deep neural networks have significantly improved various au-
dio processing tasks such as event detection [1], speech recog-
nition [2], and source separation [3]. However, most works as-
sume an offline setting, where the entire dataset is available at
the start of training. This assumption is unrealistic because new
sound patterns, speaker accents, and background noises contin-
uously emerge as time passes or as location changes. In prac-
tice, keeping all previous data and retraining the model can be
either impossible or too expensive due to data privacy, hardware
storage, and computation cost. Fine-tuning the model directly
on new data can adapt it to the latest data distribution but may
come at a cost of forget previously learned knowledge, resulting
in what is known as catastrophic forgetting [4].

Continual learning or lifelong learning aims to overcome
forgetting and enhance long-term performance for a series of
tasks [4, 5]. In each task, the model can only access the current
data with little or no access to the previous data. A variety of
methods have been proposed under this setting, which can be
categorized into three types: regularization, replay, and param-
eter isolation [4]. Recently, self-supervised contrastive methods
have been shown to acquire more task-persistent knowledge in
both image [6] and audio [7] domains. Although these methods
significantly reduce forgetting without retraining on all data, the
computation and storage overhead is still significant. For exam-
ple, [8, 9] store and forward the last or all previous model(s) to
teach the current model earlier task knowledge. Replay meth-
ods [10, 11] store selected exemplars from previous tasks and
retrain the model on them. Progressive model [12, 13] gradu-
ally enlarges the model size after each task. Contrastive learn-

ing like SimCLR [14] generates at least two augmented views of
each audio instance, resulting in twice the computation. Thus,
there is a need for more efficient continual learning methods to
tackle the above overhead.

Here, we present a new method for efficient continual learn-
ing called Delayed Codebook Regularizier (DeCoR). Unlike
other regularization-based methods, DeCoR does not require
extra storage for the teacher model. Instead, it only stores a
single quantization index for each audio in the new dataset.
The index corresponds to the nearest code in the feature code-
book generated by the model before training on the new dataset.
Once these indices are obtained, the codebook can be freed from
memory. By predicting the delayed indices from the current fea-
tures, DeCoR indirectly transfers the knowledge from the previ-
ous model to the current one. We expect the DeCoR-regularized
model to perform better on earlier tasks with minimal additional
computation and storage. The comparison between DeCoR and
other continual learning methods is shown in Figure 1. DeCoR
is a straightforward method that can be applied to various audio
processing tasks.

In this study, we evaluate the effectiveness of DeCoR
on class-incremental sound classification [15] from features
trained with or without DeCoR. In addition, we integrate
DeCoR into the continual self-supervised representation learn-
ing framework [7] to investigate its impact on self-supervised
knowledge transfer. Our experiments demonstrate that DeCoR
outperforms simple finetuning or knowledge distillation from
the previous model for both supervised and self-supervised set-
tings with a higher long-term accuracy and lower forgetting.

2. Related work
Traditional replay and knowledge distillation methods require
storage of some training data or the teacher models to mitigate
forgetting [8, 9, 10, 11]. A straightforward alternative to reduce
storage is to compress input data or model features. For exam-
ple, AQM [16] learns adaptive multi-level image compression
and reconstruction along with continual classification to maxi-
mize the number of samples given a fixed replay budget. IB-
DRR [17] further proposes a two-step compression and main-
tains the replay as codes. Another direction is to use codes as
training targets, such as [18] which replaces the projection layer
in contrastive learning with a quantization module and tries to
maximize the similarity between the continuous representation
of one view and the quantized representation of the other.

In contrast to these methods, DeCoR only keeps and pre-
dicts quantization indices. The regularization loss is calcu-
lated between the predicted and actual indices, not between the
estimated features and codes. Code index prediction has al-
ready been adopted as an SSL objective in HuBERT [19] and
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Figure 1: Comparison of DeCoR with other continual learning methods. The arrows indicate computation, and the green boxes indicate
extra storage. We can observe that DeCoR is more efficient in terms of both computation and storage. Replay-based methods require
storing and training on the audio rehearsal. Model knowledge distillation requires additional space and computation to store and
forward one or more past model checkpoints. Contrastive learning demands training on multiple augmented views of the same audio.
In contrast, DeCoR only stores and predicts one quantization index per audio.

WavLM [20], where masked cluster indices from K-means of
either MFCC or learned representations are predicted. This
forces the model to learn contextual information. Later, MVQ-
KD [21] proposes to do knowledge distillation from HuBERT
to conformer [22] by predicting HuBERT code indices which
achieves comparable performance but with much fewer data,
model size, and training time. Our method is similar to MVQ-
KD but targets continual learning rather than model compres-
sion. Our codebook is manually constructed from the same but
earlier model instead of another larger teacher model.

3. Method
3.1. Problem definition

We proceed with the standard continual learning setup, where
we have an ordered sequence of T tasks [T1, T1, ..., TT ] with
task boundaries given. Each task Tt is associated with a dataset
Dt = {(x(i)

t , y
(i)
t )} with both different audios and their corre-

sponding labels. We aim to train an audio feature extractor M
on this sequence with only access to the current data but work-
ing well on all previous tasks. We evaluate Mt, the model at
the end of Tt, by sound classification accuracy of all seen tasks
j, j ≤ t. We define At,j to be the accuracy of Mt on Dj , and
we aim to maximize the average accuracy on seen classes At

while minimizing the largest forgetting Ft from the historical
best for every t, especially the last task t = T :

At =
1

t

t∑

j=1

At,j , Ft =
1

t− 1

t−1∑

j=1

max
1≤τ≤t

(Aτ,j −At,j) (1)

3.2. Delayed Codebook Regularizer

We can consider the Delayed Codebook Regularizer (DeCoR)
as a simplified version of model distillation methods such as
LwF [8]. In LwF, knowledge is transferred from the previous to
the current model by comparing the output probabilities of both
models for the same input. However, with DeCoR, we avoid the
need to store and forward the teacher model by using a selected
set of teacher features, which we call the delayed codebook. To
regularize the current model, we pair each training audio with
the closest code from the codebook. This reduces the problem
of model-to-model to codebook-to-model distillation.

DeCoR uses index prediction [19, 20, 21] as its distilla-
tion objective, which involves predicting the index of the closest
code in the delayed codebook for each training example. While
other options, such as minimizing the distance between features
and codes, are available, DeCoR opts for index prediction since
it further reduces storage requirements by only keeping the in-
dices as pseudo training labels. Additionally, this objective is

compatible with the model’s original training objective, includ-
ing contrastive loss, as demonstrated in our experiments.

The process of building the delayed codebook and regular-
izing the model is conducted in an alternating fashion, as illus-
trated in Figure 2. We refer to the step of constructing the code-
book Ct and assigning indices It at the task boundary between
Tt and Tt+1 as INCREMENT. On the other hand, we refer to the
step of training model Mt+1 with indices It throughout a new
task Tt+1 as DISTILL. In the INCREMENT step, the model is
fixed while the latest knowledge is encoded in the delayed code-
book. During the DISTILL step, the delayed knowledge (repre-
sented by Ct and It) compared to Mt+1 is transferred back to
the model by predicting the indices assigned in INCREMENT.

3.2.1. INCREMENT

The INCREMENT step is executed at the task boundary, just
before the model Mt is updated on the new task Tt+1. To con-
struct the delayed codebook Ct, we encode the new audio data
Xt+1 using the fixed parameters of Mt to obtain features Φt.
Subsequently, we apply K-means clustering to Φt, with K be-
ing the desired codebook size, to create the codebook Ct. At
the final iteration of K-means, we obtain the cluster assignment
(i.e., the nearest code index) iit ∈ It for each encoded feature
ϕi
t ∈ Φt. At this point, we can discard the codebook Ct and only

retain the quantization indices It. The equations that define the
INCREMENT step are provided below:

Φt = Mt(Xt+1)

Ct, It = K-means(Φt) (2)

Recall that K-means updates the clusters to minimize the L2

distance between each feature ϕi
t+1 and its nearest code Ct[i

i
t]:

min
Ct

∑

i

||ϕi
t − Ct[i

i
t]||2, iit = argmin

i=0,...,K−1

||ϕi
t − Ct[i]||2 (3)

3.2.2. DISTILL

DeCoR distills the knowledge indirectly from the model Mt

trained on previous tasks to the latest model Mt+1 trained on
the current task by letting the latter predict the quantization in-
dex of the former. We initialize an index prediction head Pt+1

with the output dimension equal to the number of codes K.
Pt+1 and Mt+1 are optimized jointly using the cross entropy
loss, with the quantization index serving as the pseudo label.

ϕi
t+1 = Mt+1(x

i
t+1)

pit+1 = Pt+1(ϕ
i
t+1)

Li
pd = CrossEntropy(pit+1, i

i
t) (4)
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Figure 2: Graphical illustration of how DeCoR works with irrelevant model components omitted for clarity. The gray arrows correspond
to actions taken during the INCREMENT step at the task boundary, where new task data is encoded, clustered, and indexed using the
delayed codebook. The red arrows correspond to actions taken during the DISTILL step throughout the task, where the model is trained
to predict the indices assigned earlier in the INCREMENT step. Notably, there is no direct connection between the current and previous
models, and knowledge is distilled solely through index prediction. Past models and codebooks are depicted for illustration purposes,
with only quantization indices being stored.

3.2.3. Training objective

We apply DeCoR to the acoustic scene classification task. The
original loss for the task is cross entropy Lce between the scene
labels and the predicted scene probabilities from the sound clas-
sification head Ht+1 on top of the encoder Mt+1. After the first
task, we initialize an index prediction head Pt+1 and optimize
the DeCoR regularization loss Lpd between the quantization in-
dices and the predicted index probabilities. The combined loss
for the subsequent task is:

L = Lce + λLpd (5)

We also incorporate DeCoR with self-supervised learning
(SSL) techniques like SimCLR [14]. SimCLR trains on audios
without labels. Therefore, we need to replace the classification
head Ht with the projection head Ft and the supervised cross-
entropy loss Lce with NT-Xent loss Lssl. After these modifica-
tions, the final loss becomes:

L = Lssl + λLpd (6)

3.2.4. Overhead

DeCoR requires an additional epoch, referred to as epoch 0,
when entering a new task to INCREMENT the codebook with
the model weights frozen. However, Epoch 0 is insignificant
compared to the full training up to tens or hundreds of epochs
per task. In DISTILL step, a shallow index predictor is added to
the feature extractor for knowledge distillation. The size of the
predictor is relatively small compared to the model backbone,
and We explore the effect of the number of predictor layers in
ablation.

Once each new audio is assigned to the nearest code index,
we can release the codebook from memory and directly update
the model without making a checkpoint copy. The extra storage
for indexing each audio is minimal, one integer or log2 K bits.

4. Experiments
4.1. Dataset

In our experiments, we use TAU Urban Acoustic Scenes 2019
dataset [23] for incremental acoustic scene classification. The
dataset has 1440 audio segments, each representing one of the

Table 1: Final accuracy and forgetting for 5 tasks.

LEP SLEP
Method A5 ↑ F5 ↓ A5 ↑ F5 ↑ Storage ↓
Baseline 52.9 23.6 35.8 36.1 0 B

LwF 54.0 19.1 40.3 30.5 302 MB
DeCoR 57.3 17.1 45.2 23.4 4.08 KB
SimCLR 59.0 18.8 42.5 24.7 0 B

SimCLR + LwF 59.5 17.1 41.4 28.1 302 MB
SimCLR + DeCoR 60.7 15.5 44.7 21.8 4.08 KB

Table 2: Final accuracy and forgetting for 10 tasks.

LEP SLEP
Method A10 ↑ F10 ↓ A10 ↑ F10 ↓ Storage ↓
Baseline 29.8 32.7 18.8 35.0 0 B

LwF 34.7 28.8 24.7 28.6 302 MB
DeCoR 47.0 20.5 33.8 21.8 2.26 KB
SimCLR 57.5 17.3 40.8 20.4 0 B

SimCLR + LwF 57.7 18.3 41.2 23.4 302 MB
SimCLR + DeCoR 59.3 16.9 42.0 19.4 2.26 KB

10 acoustic scenes recorded in multiple locations. We randomly
split 10 classes into T = 5 or 10 tasks. The classes are evenly
divided and disjoint for each task. For T = 5, the model learns
two new classes per task. For T = 10, the model learns one
new class per task.

4.2. Model training and evaluation

Our audio encoder consists of the first 12 convolution layers of
CNN14 [1] with output dimension of 2048. To ensure a fair
comparison of supervised and self-supervised representations,
we follow the training and evaluation setups in [7]. In the con-
tinual learning step, we train the encoder M incrementally on
the sequence of tasks using either the supervised classification
head H with loss Lce or the self-supervised SimCLR head F
with loss Lssl, for 100 epochs. In the evaluation step, we take
the pretrained M, freeze its weights, and train a linear classifier
on top with either all task data (Linear Evaluation Protocol or
LEP) or 200 samples per task (Subset Linear Evaluation Proto-
col or SLEP), for another 50 epochs.

The evaluation step is identical for all experiments. In the
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Figure 3: LEP and SLEP accuracy evaluated at the end of every task. The order from left to right is as follows: LEP for supervised
training, LEP for self-supervised training, SLEP for supervised training, and SLEP for self-supervised training. We observe an im-
provement in At with DeCoR starting from t = 2. An exception is t = 2 for 10-task supervised training, where the model only learns
one class at t = 1, making it too trivial to classify and resulting in the distilled knowledge from t = 1 being useless.

continual learning step, the Baseline experiment finetunes the
model with only Lce, the SimCLR experiments create two aug-
mented views per audio segment, the LwF experiments add a
distillation loss to minimize the KL divergence between the old
and new classification probabilities or between the old and new
SimCLR projections, and the DeCoR experiments use a L = 2
layer index predictor, codebook size K = 32, and loss weight
λ = 0.2. SpecAugment [24] is used for all experiments, while
no data augmentation is used for DeCoR’s INCREMENT. We
follow the predefined data splits of TAU dataset. All methods
are implemented using Speechbrain [25] and are executed on an
NVIDIA A40 GPU.

4.3. Results

The results are summarized in Table 1 and 2, which show the
final average seen accuracy AT and the largest forgetting FT

for T = 5 and T = 10 tasks, respectively. The extra storage
is shown in the ”Storage” column, and the number is averaged
across tasks. Several observations can be made: (1). DeCoR
improves the accuracy and reduces the forgetting for both 5 and
10 tasks on both supervised and SimCLR representations. (2).
DeCoR outperforms model distillation LwF despite using much
fewer resources. (3). DeCoR and SimCLR together produce
stronger results and outperform the baseline LEP accuracy by
around 8%(T=5) and 30%(T=10).

Figure 3 plots the LEP and SLEP At at the end of each task
with and without DeCoR in both supervised and SimCLR train-
ing. We observe a consistent improvement with DeCoR starting
from the second task, with a significantly larger performance
gain for larger t in supervised training.

To summarize, our results demonstrate that predicting ear-
lier audio codes is an effective regularization technique that can
be used in both supervised and self-supervised training.

4.4. Ablation

The codebook size K ∈ {8, 16, 32, 64} and the number of
index prediction layers L ∈ {1, 2, 3} are tried for supervised
T = 5 experiments. The LEP and SLEP results are displayed
in Figure 4, with better performance being towards the top-right
corner. The performance is improved from a linear (L = 1) to a
nonlinear (L = 2) index predictor and from 8 codes to 32 codes.
However, adding a third layer or increasing the number of codes
does not lead to further improvement. We choose K = 32 and
L = 2 in this paper. We hypothesize that the optimal choice
of K and L depends on the feature dimension, the dataset size,
and the downstream task, which leaves for future study.
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Figure 4: Impact of DeCoR codebook size K and the predictor
layer number L to the final LEP (top) and SLEP (bottom) ac-
curacy and forgetting for 5-task supervised training. All combi-
nations result in better performance compared to the Baseline.

5. Conclusion
In this work, we present a simple and efficient continual
learning regularizer called DeCoR to reduce model knowledge
forgetting. We apply DeCoR to both supervised and self-
supervised continual representation learning and show experi-
mentally that models trained with DeCoR achieve higher accu-
racy and lower forgetting on acoustic scene classification. In
future research, we aim to extend the application of DeCoR
to other audio processing tasks, such as speaker identification
and speech recognition, and adapt it to online learning problems
without task boundaries.
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