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Abstract

End-to-end trainable (E2E) automatic speech recognition
(ASR) systems have low word error rates, but they do not model
timings or silence by default unlike hidden Markov model
(HMM)-based systems. In this paper, an extra neural aligner
module is proposed for E2E ASR models, which labels the word
timings in a post-processing stage. Pre-trained neural trans-
ducer and attention-based encoder-decoder models are adopted
as the ASR backbones for experiments. The aligner module
uses self-attention and cross-attention and takes the hidden rep-
resentations from the backbone to predict the durations of each
word and the possible silences. A novel loss is proposed for
aligner training with the backbone frozen. Experimental results
showed that when trained using the references from an existing
HMM-based forced aligner, the proposed methods can make
time predictions at accuracy about 95% for matched recognised
words, and about 99% for utterances up to 10 s with reference
text, with 200 ms tolerance.

Index Terms: End-to-end speech recognition, forced align-
ment, duration modelling, normalised duration

1. Introduction

Automatic speech recognition (ASR) systems that use deep
neural networks have achieved low word error rates (WERs)
and are widely used. Conventional ASR systems combine hid-
den Markov models (HMMs) and neural networks as acoustic
models, along with a separate language model, and are known
as hybrid systems. In recent years, there has been a significant
amount of research into end-to-end trainable (E2E) ASR sys-
tems, which come in two main types: neural transducer (NT)
models [1] and attention-based encoder-decoder (AED) models.
NT models consist of an encoder network for acoustic features,
a prediction network for text, and a joint network that takes both
acoustic and text information to predict the next symbol. AED
models, such as the listen, attend and spell model [2], also have
an encoder for acoustic input and a decoder with an attention
mechanism to generate the output text. Recurrent neural net-
works or Transformer networks [3], and similar structures, are
typically used as network components.

Although E2E systems can achieve low WERs, they lack
the ability to identify non-speech regions such as silence by
default, and there is no consensus on the definition of when a
recognised unit should begin or end. In hybrid systems, usually
phones are the basic modelling units which are represented by
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HMMs, and then combined according to dictionaries to form
words. Hence an HMM network can be constructed for an ut-
terance using a reference transcription along with the dictio-
nary, and optional silence states can be inserted between words.
The Viterbi algorithm is then used to identify word boundaries
and possible silences, which is known as forced alignment. Ac-
curate timing information for ASR output is crucial for vari-
ous applications, including keyword spotting and voice edit-
ing, as well as downstream tasks based on ASR systems. Al-
though a trained hybrid system can perform forced alignment
for E2E system outputs, this approach can be costly to de-
ploy [4]. Therefore, there is a growing interest in enabling E2E
systems to predict the timing of recognised units using neural
methods. Moreover, to make time prediction an integral part of
any E2E ASR pipeline, it is desired to apply it without requiring
any changes to the existing ASR backbone model.

This paper introduces a neural aligner module as a post-
processing step for E2E ASR systems. The aligner utilises
a non-autoregressive (NAR) Transformer decoder structure to
segment the utterance into units of interest, with the starting
and ending times of each word predicted simultaneously. Non-
speech regions such as silence can be labelled by consider-
ing extra non-word units with possibly zero duration between
words. The aligner does not require a separate HMM-based
system or Viterbi decoding algorithm during testing, and it does
not affect the training or testing of existing E2E ASR sys-
tems. However, relying on regression-based duration predic-
tion for each unit may not ensure that the total predicted dura-
tion matches the actual utterance time. To address this issue,
our paper proposes modelling the normalised segment lengths
for an utterance as a distribution, which can be trained using
the cross-entropy (CE) loss. Experimental results on the Lib-
rispeech [5] data set show that the proposed methods can accu-
rately model duration and generate satisfactory time alignment,
even with ASR errors.

The rest of the paper is organised as follows: Sec. 2 sum-
marises related studies on alignments in E2E ASR systems and
allowing word timing prediction. Sec. 3 describes the methods
to extract duration and model alignments. Sec. 4 gives the de-
tailed setup for the experiments. The results are presented in
Sec. 5 with discussions, and conclusions are drawn in Sec. 6.

2. Related work

Recently there has been several studies on the aligning mecha-
nisms in E2E ASR systems. Effort has been paid to reduce the
latency of streaming models [6, 7, 8, 9, 10], including training
with restrictions based on forced alignment for streaming NT
models [7]. Although reducing latency is important for stream-
ing applications, the time instant of symbol emission still gives
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no direct indication of start and end times of a word, as inter-
word silences cannot be detected.

Methods to enable E2E models to predict word times have
also been studied [4, 11, 12, 13, 14, 15] and some of them in-
teract with ASR training. HMM-based time alignments were
often used to restrict time alignments in E2E systems in train-
ing. In [4, 6] it was found that such restrictions may increase
the recognition WER for an NT model, but the WER and time
accuracy could be improved using a second-pass ASR where
an AED decoder is trained and alignment restriction applied to
one of the attention heads [4]. Phone-based CE layers, which
are similar to the setup used in hybrid systems and trained us-
ing forced alignment, were also investigated for the encoders
in NT models [12] and AED models [11] so that Viterbi align-
ment can be performed. There has also been research [11, 16]
aimed at reducing the need for HMM-based forced alignments,
for example, obtaining time from CTC [17] alignments.

Duration modelling can be important in speech processing,
including segmenting units in ASR [18, 19, 20, 21] and duration
prediction in text-to-speech (e.g. [22]), since duration is closely
related to the matching between acoustic and text.

3. Duration modelling and time prediction

In this paper, an additional neural aligner is considered for an
E2E ASR system, whose training is independent of ASR train-
ing, while the aligner takes the representations from the base
ASR model. The aligner can be trained using duration informa-
tion from forced alignments, so that it can predict the duration
of each word or silence. From word and silence durations, the
time alignment can then be inferred after the first-pass ASR de-
coding without relying on HMM-based search or affecting the
original ASR system performance.

3.1. Model and methodology

As shown in Figure 1, the aligner is a neural module that takes
the hidden representations from the ASR system encoder and
decoder (or prediction network), and predicts the duration of
each unit. Here the E2E system is assumed to be already
trained. After the ASR output has been generated, the aligner
takes the recognised text as input and predicts the time align-
ment with respect to its acoustic input representations.

An NAR version of the Transformer decoder block' is used
to build the aligner, which was also used in [23]. Therefore
self-attention can take the whole input information into account
(not only the past context) which is important for later opera-
tions. Cross-attention uses the encoder representation, which is
necessary to predict duration given the current acoustic input.
The output vectors of the final aligner block are projected into
scalars for duration prediction. The structure of the aligner is
shown in Figure 2.

Conventionally, the Viterbi algorithm with path tracking en-
sures that each frame is assigned to an HMM state hence the to-
tal time is matched exactly, which was found to be important in
preliminary experiments. Local regression between the aligner
output scalars and the duration from the forced alignments can-
not enforce this since the model will not be error-free and the
total duration can be incorrect. Therefore the proportion of time
(or normalised duration) for each unit is predicted via a softmax
so that the total time will be matched.

A standard Transformer decoder block only allows access to past
context. However this restriction is not needed in this setting.
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Figure 1: The overall model. The aligner is connected to the
encoder and the decoder of the original ASR system and trained
alone. It can use ASR output (dashed lines), or act as a forced
aligner if the reference text is given.

For an utterance v with N words and no silence, in prac-
tice, E2E ASR decoders use a padding token (<pad>) as the
first token to be fed forward before the first word piece is given,
e.g. blank for NT models or start-of-sentence (<sos>) for AED
models. These tokens can be treated as pseudo-words with zero
duration so there are a total of (N+1) words. Although due
to word piece tokenisation there are more decoder input steps,
(N +1) scalars can be selected from the aligner output that cor-
respond to word boundary tokens in u (Ty, T4, 1% in Figure 2),
and applying a softmax to get the N-dimensional (/N-d) nor-
malised duration vector tj;.4 ignoring those corresponding to a
zero duration (7 in Figure 2). Each selected output still takes
account of the full utterance text information due to the self-
attention. If the training set is I/, then the training loss L for the
aligner can be written as follows:

L= CE(tjrea tispat)

ueU

ey

Notice that the CE in Eq. 1 is different to the usual setup using
1-hot label vector for classification. Here the label t,, refers
to the normalised duration from forced alignment.
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Figure 2: Structure of the aligner and training with the utter-
ance “one year”, only attention-related parts are shown. Op-
tional silences (sil) can be inserted before and after words.

3.2. Dealing with silence

To find word start or end times, apart from modelling the word
durations, silences are also important as they can occur before



and after each word with a zero minimum duration. Assume the
utterance has N words, then (2/N+1) durations will be needed.
With <pad> there will be (/N+1) output scalars for word dura-
tion. By introducing another projection layer at the aligner out-
put vectors to generate another (N+1) scalars (e.g. T3, 11, T
in Figure 2) to model the silence after each word, the (2N +1)-d
vector for softmax can be obtained (<pad> has zero duration
and is not considered). This method will be referred to as joint
modelling. Notice that the increase in the dimension of the nor-
malised duration could be problematic for long utterances.

Modelling the word start times and word end times can
be separated, by considering pseudo-words start-of-sentence
(<so0s>) and end-of-sentence (<eos>) of zero duration. For an
N-word utterance, to model the word end times, each possible
silence can be combined with its following word and the com-
bined duration is modelled with the final silence combined with
<eos>, hence a (IN+1)-d normalised duration vector is used.
Similarly the start times can be modelled using another (N +1)-
d vector by combining silences with the preceding word, and the
two corresponding CE losses are added together. By comparing
the two (IN+1)-d normalised durations, potential silences can
be found assuming the model is well trained. If the two neigh-
bouring words overlap then there is no silence in between, and
the midpoint of the overlap is chosen as the boundary between
the words. Although the modelling targets are changed, the re-
quired model structure is the same as for joint modelling. This
method will be referred to as separate modelling. By merging
silence, duration modelling may be poorer but the alignment
may be better especially for small amounts of silence as it re-
duces the number of units for each softmax.

4. Experimental setup
4.1. Data and model

The experiments were conducted using the Librispeech [5] data
set. The backbone ASR model and the aligner were trained us-
ing the train-clean-100 subset, while dev-clean and dev-other
were merged to form the validation set. Testing results using
test-clean and test-other are reported. The word-level forced
alignment for Librispeech in [24] was used as the reference
time, which was generated by the Montreal Forced Aligner [25].
80-d filter bank features together with 3-d pitch information
were extracted at 10 ms frame shift. SpecAugment [26] with
parameters (W, F, mp, T, p, mr) = (40, 27, 2,40, 1.0, 2) was
used for data augmentation. A unigram word piece model was
used to generate a set of 600 word pieces as targets.

The implementation was based on the ESPnet toolkit [27].
An NT model with limited decoder history [28] and an AED
model were tested in this paper as ASR backbones. The en-
coder for both models is the Conformer (S) in [29], which has
16 encoder blocks, 4 attention heads, and encoder dimension
144. The NT model has a feed-forward predictor taking 3 steps
of word piece history and a joiner, both with 320-d hidden
units, and was trained with the standard transducer loss. The
AED model has an 1-layer uni-directional LSTM [30] decoder
and location-sensitive single head attention, both with dimen-
sion 320, and was trained without CTC. Both backbones have
roughly 10M parameters. The aligner has 12 blocks with 4 at-
tention heads and the remaining dimensions matched to the en-
coder and decoder hidden dimensions so that it can directly use
the corresponding representations. Apart from the encoder out-
put, for the NT model, the aligner takes the decoder output, and
for the AED model the aligner takes the output of the embed-
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ding layer of word pieces. The aligner has roughly 4M param-
eters. The Noam scheduler [3] and empirical hyperparameters
(drop-out rate 0.1, 25k warm-up steps) were adopted. The NT
model final WERs on test-clean and test-other were 10.4% and
26.7%, and for the AED model they were 10.1% and 26.1%.
Then the aligner was added to the backbone and trained using
the proposed loss for 120 epochs (roughly took 43 h for using
NT and 60 h for using AED on single NVIDIA A100 GPU).
The backbones were frozen during aligner training.

4.2. Evaluation metrics

To measure the quality of the time alignment, the mismatch in
start time |At,| and end time |At.| for words was measured as
suggested in [4, 11]. The average (Avg) mismatch was calcu-
lated in ms, and with a 200 ms tolerance window the accuracy
was also calculated. A small average mismatch and a high ac-
curacy are preferred. The aligner aligns the reference text or the
decoded text after ASR (-D for using decoded text). To mea-
sure the alignment quality for ASR output, only matched words
in the decoded text and the reference were considered. Since the
duration is the basic quantity being modelled, the average mis-
match of word duration (|Ad|) and silence duration (|Ads|)
were also calculated. Durations were found by assigning the
Conformer outputs (with a 40 ms stride) to each word, so they
were quantised into Conformer steps first to count the mismatch
and then converted back to deviations in ms.

5. Results and discussion

The aligners based on the NT model using joint modelling (sys-
tem A1) and separate modelling (system A2) mentioned in Sec-
tion 3.2 were tested. Table 1 summarises the performance of
Al and A2 for duration modelling with reference texts. It can
be seen on average the duration mismatch is slightly larger than
half of one Conformer step (20 ms) and more than 99% of the
predictions are within 200 ms tolerance, which indicates the
aligner could learn to predict duration accurately. In Table 1, A1
has smaller duration mismatch on average and has more predic-
tions within the tolerance compared to A2, which indicates that
joint modelling has, on average, better performance for duration
prediction compared to separate modelling.

Table 1: Quality of duration prediction for NT joint modelling
(Al) and NT separate modelling (A2) on the test sets.

Set test-clean test-other
System Al A2 Al A2
Avg(|Ady|) (ms)  21.7 251 252 273
Avg(]Ads|) (ms) 21.6 251 247 26.7
% |Adw| <200ms  99.7 993 995 99.3
% |Ads| <200ms  99.7 993 99.5 994

For the NT backbone model, with the strict monotonicity
applied on the transducer loss trellis, an alignment can be found
by tracking the best path with the largest total likelihood. As si-
lence is not modelled, the word end time was defined as the time
of its last word piece in the best-path alignment. This approach
was used here as a baseline for word end times for both refer-
ence text (AO) and recognised text (AO-D) using the NT ASR
backbone, and the results are given in Table 2. The baseline
word end time average mismatch is about 3 Conformer steps
(120 ms) and the accuracy within 200 ms tolerance is about
86%. In Table 2, for the NT model, alignment quality using



recognised text is lower compared to using reference text.

Table 2: Quality of word end time given by NT backbone using
the reference text (AO) and using the recognised text (AO-D).

Set test-clean test-other
System A0 A0-D A0 AO0-D
Avg(|Ate|) (ms) 116 119 113 118
% |At.| <200ms 86.3 858 86.8 859

The time alignment quality using reference texts for Al and
A2 are presented in Table 3. Due to duration error accumula-
tion, the accuracy of word timings was reduced compared to
duration prediction, which is in line with the differences be-
tween Tables 1 and 3. On average the time mismatch in Table 3
went up to nearly 2 Conformer steps (80 ms). With the 200 ms
tolerance, Al could approach 94% accuracy and A2 could ob-
tain a better accuracy of 95.5%, both are much better than AO
in Table 2 for word end timings. Hence the proposed methods
are effective, and the alignment quality could be improved by
reducing the vector lengths for the final softmax via separate
modelling. On the other hand, A1l is slightly better than A2 in
duration modelling. So the experiments also showed that the ef-
fect of duration errors in separate modelling are smoothed and
more localised. Since only the train-clean-100 subset was used
for training, in Table 1 and Table 3, the performance on test-
clean is slightly better compared to test-other. Overall, both A1l
and A2 can still predict good time alignments.

Table 3: Alignment quality using the reference text for NT joint
modelling (A1) and NT separate modelling (A2) on the test sets.

Set test-clean test-other
System Al A2 Al A2
Avg(|Ats]) (ms) 794 745 815 743
Avg(|Ate]) (ms) 797 746 822 753
% |Ats| <200ms 94.0 955 939 955
% |At.| <200ms 94.0 956 938 954

Instead of using reference text, the recognised text from the
NT model were adopted for testing Al and A2 and the results
are in Table 4. Compared to AO-D in Table 2, A1-D and A2-
D still has much smaller mismatch (about 2 Conformer steps)
and higher accuracy (>90%). Compared to Table 3, in Table 4
the average mismatch becomes slightly larger and the accuracy
is reduced. The degradation could be caused by word errors in
ASR, while A2-D is more affected compared to A1-D (0.3%
vs. 0.8% absolute difference on test-clean). Therefore, with the
NT backbone, the separate modelling A2-D seems to be more
sensitive to the ASR quality by merging silences during mod-
elling, although it still has better overall performance compared
to A1-D. The results on test-other degrades more compared to
test-clean as it has (many) more errors in ASR.

Separate modelling was then tested for the AED backbone
(system B2). Results using both the reference text and the
recognised text from the AED model were included in Table 5.
It can be observed that B2 and B2-D have alignment quality
similar to A2 and A2-D by comparing Table 5 with Tables 3
and 4, which shows the effectiveness of the proposed methods
for E2E models. In Table 5, unlike for the NT setup, the align-
ment is better when considering the matched words after ASR.
By taking the decoder embeddings and the encoder outputs of
the AED model, the aligner’s time alignment prediction seems
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Table 4: Alignment quality using the NT recognised text for NT
Jjoint modelling (A1-D) and NT separate modelling (A2-D).

Set test-clean test-other
System Al-D A2-D Al-D A2-D
Avg(|Ats|) (ms) 81.1 78.0 87.5 80.7
Avg(|Atel) (ms) 81.0 78.0 87.6 80.7
% |Ats| <200ms ~ 93.7 94.7 924 93.7
% |At.| <200ms  93.7 94.8 92.4 93.7

to be more robust to the backbone ASR errors compared to the
NT model’s setup, where each decoder output takes history in-
formation, but is also affected by ASR errors in the history.

Table 5: Alignment quality for AED separate modelling using
the reference text (B2) and AED recognised text (B2-D).

Set test-clean test-other
System B2 B2-D B2 B2-D
Avg(|Ats|) (ms) 77.8 769 80.2 79.7
Avg(|Ate]) (ms) 77.8 768 81.8 79.7
% |Ats] <200ms  95.0 95.1 947 952
% |At.| <200ms 95.0 95.1 945 952

In [4], training used relatively short utterances, and the ac-
curacy over 99% with the 200 ms tolerance was considered as
good performance. Here utterances less than 10 s in the test sets
were selected to form subsets test-clean-short and test-other-
short. Alignment quality evaluated using the subsets and ref-
erence text are shown in Table 6, both A2 and B2 were able to
approach the 99% accuracy, which is much better compared to
the results for the original sets. So the methods are very accu-
rate for short to moderate-length utterances, and long utterances
could be split to obtain better quality alignments.

Table 6: Alignment quality using the reference text and separate
modelling for NT setup (A2) and AED setup (B2) on utterances
with moderate lengths (<10s).

Set test-clean-short  test-other-short
System A2 B2 A2 B2
Avg(|Ats]) (ms)  52.5 56.1 57.9 61.6
Avg(|Ate]) (ms) 532 56.7 58.8 63.1
% |Ats| <200ms  99.2 99.0 98.8 98.4
% |Ate] <200ms  99.2 99.1 98.7 98.4
6. Conclusions

In this paper, a novel way of enabling a trained E2E ASR system
to predict the start time and end time of each word after ASR
has been proposed by using a neural aligner based on an NAR
Transformer decoder. The aligner takes the ASR system repre-
sentations to model normalised word and silence durations, and
produce a time alignment. Using the NT backbone, durations
could be modelled well. The alignment quality was improved
by trading off against duration acuracy. For both the NT and the
AED backbone, alignment accuracy for matched words could
approach 95% using reference or decoded text with 200 ms tol-
erance, and accuracy of aligning reference texts for utterances
less than 10s was about 99%. The proposed methods are ef-
fective in duration modelling and time alignment prediction for
E2E ASR models, and can be robust to ASR errors.
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