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Abstract
Automatic Speech Recognition (ASR) has seen remarkable

advancements with deep neural networks, such as Transformer
and Conformer. However, these models typically have large
model sizes and high inference costs, posing a challenge to de-
ploy on resource-limited devices. In this paper, we propose
a novel compression strategy that leverages structured pruning
and knowledge distillation to reduce the model size and infer-
ence cost of the Conformer model while preserving high recog-
nition performance. Our approach utilizes a set of binary masks
to indicate whether to retain or prune each Conformer module,
and employs 𝐿0 regularization to learn the optimal mask val-
ues. To further enhance pruning performance, we use a layer-
wise distillation strategy to transfer knowledge from unpruned
to pruned models. Our method outperforms all pruning base-
lines on the widely used LibriSpeech benchmark, achieving a
50% reduction in model size and a 28% reduction in inference
cost with minimal performance loss.
Index Terms: ASR, Model Compression, Structured Pruning

1. Introduction
Large models such as Conformer [1], wav2vec 2.0 [2], and
Whisper [3] have achieved remarkable success in Automatic
Speech Recognition (ASR) systems, yet they come at a high
cost in terms of storage, memory, and inference latency. For
instance, the Whisper large model comprises 1.5 billion pa-
rameters, making it extremely difficult to deploy on resource-
constrained scenarios such as client edge devices. Therefore, it
is crucial to compress ASR models for practical deployment.

Knowledge distillation [4, 5] have been demonstrated to be
effective in producing a faster model for ASR [6, 7, 8, 9]. How-
ever, these methods have several limitations. First, it necessi-
tates a meticulous design to customize the high-quality smaller
model [10, 11], which requires expertise and can be expensive,
given the various deployment requirements of real-world ASR
applications. Second, distillation involves a full training from
scratch process [12, 13], which is time-consuming.

Weight pruning can efficiently produce a small model that
meets a given resource constraint. In particular, magnitude
pruning [14, 15], which preserves model parameters with high
absolute values, is the most widely used method for pruning
an ASR model [16, 17, 18]. However, it can often lead to un-
satisfactory performance under a high compression ratio. More-
over, while these weight pruning methods enable the removal of
weights at arbitrary locations, resulting in sparsity, these sparse
models are usually unstructured, which hinders actual efficiency
benefits. This is because running them in standard hardware
usually requires reconstructing the original dense shape, lead-
ing to little improvement in latency [16, 19].

In this work, we propose a novel structured pruning ap-
proach to directly speed up ASR inference of a Conformer-
Transducer [1] model, while preserving high accuracy. Our ap-
proach leverages learnable binary masks to determine whether
to retain or prune distinct components of the Conformer encoder
within a hybrid pruning granularity, including: (i) an entire at-
tention head in a multi-head self-attention layer, (ii) a specific
dimension in the intermediate layer of the feed-forward network
(FFN), (iii) the entire convolution module in each Conformer
block, and (iv) the hidden dimension. To determine the values
of the masks, we employ an augmented 𝐿0 regularization ap-
proach that makes the discrete masks differentiable. In contrast
to magnitude pruning, our approach jointly learns the masks
and updates model parameters to achieve optimal pruning de-
cisions. Furthermore, we introduce a layerwise knowledge dis-
tillation technique to further enhance the pruning decisions and
performance by transferring layerwise hidden states from the
unpruned model to the pruned model.

We evaluate our method on the widely-used LibriSpeech
benchmark [20] under various compression ratios. Experimen-
tal results show that our method can achieve up to 50% pa-
rameter pruning with minimal degradation in performance for
Conformer-Transducer. Furthermore, the pruned model reduces
the real-time factor by 28% on a CPU device.

2. Method
In this section, we present our approach for expediting ASR
inference on hardware resource-limited scenarios. We use Con-
former [1] as the representative model due to its wide usage
in ASR. Our approach consists of two steps. First, we intro-
duce a hybrid structured pruning strategy tailored to the CNN-
Transformer architecture of the Conformer model, which as-
signs binary masks to various modules such as attention heads
and hidden dimensions to indicate their removal or retention.
Second, we leverage the power of knowledge distillation and
incorporate an 𝐿0 regularization pruning algorithm to jointly
optimize the binary pruning masks and the model parameters in
order to strike the best balance between speed and accuracy.

2.1. Hybrid pruning granularity

The model pruning problem can be formulated as:

min
θ,z
Ez

[
1
𝑁

𝑁∑︁
𝑖=1

Ltask (x𝑖 , y𝑖 ;θ ⊙ z) + _∥z∥0

]
(1)

where \ denotes the model weights, z ∈{0,1} is the binary mask
introduced by pruning, where 0 indicates removal and 1 indi-
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Figure 1: (a) the hybrid pruning granularity designed for Conformer model; (b) The overview of our pruning algorithm. By combining
knowledge distillation and pruning, our approach learns an optimal set of pruning masks. 𝑊layer is the spatial transformation matrix
in layer-wise knowledge distillation (Eq. 8).

cates retention of a corresponding parameter. 𝑁 , x𝑖 , y𝑖 and
Ltask are the sample size, input, labels, and task loss of ASR
task. _ is the hyperparameter that controls the tradeoff between
accuracy and sparsity. ∥ · ∥0 denotes the 0-norm loss coefficient.

Previous research [16, 17] has mostly employed magnitude-
based unstructured pruning, which allows the pruning of unim-
portant parameters at arbitrary locations based on weights
value. However, this method often yields poor performance
with higher levels of sparsity and does not directly offer ac-
celeration benefits. Recently, unstructured [21, 22] and struc-
tured [23, 24, 25] pruning methods have been proposed in other
domains. However, these methods are not specifically designed
for ASR tasks and may result in suboptimal performance.

To address this, our objective is to structurally remove
unimportant parameters for ASR models, thereby enabling
faster inference on standard hardware while preserving accu-
racy. While prior research has primarily focused on pruning
transformer or CNN models, our approach is tailored to the
Conformer architecture, which features a unique combination
of convolution and transformer modules. To achieve optimal
results, we must develop a specific pruning policy that ac-
counts for all four modules that comprise each Conformer en-
coder layer: a feed-forward module (FFN1), a multi-head self-
attention module (MHA), a convolution module, and a second
feed-forward module (FFN2). At the same time, we also prune
the embedding layers and the decoding layers. To attain this
goal, we propose four types of binary masks z ∈{0,1} to con-
trol the sparsity of different modules, as illustrated in Fig. 1a.
• HEAD MASK zHEAD . We use z𝑖head 𝑗

to determine whether 𝑗-
th head of the 𝑖-th encoder layer should be kept or removed.

• FFN INTERMEDIATE MASK zFFN . We use masks z𝑖FFN 𝑗
to

prune the 𝑖-th FFN 𝑗-th channel in intermediate dimensions.
• CONV MODULE MASK zCONV . Although the convolution

module has comparatively few parameters, it contributes sig-
nificantly to the total number of floating-point operations
(FLOPs) in the model. To maximize inference efficiency, we
introduce a gate mask, denoted as z𝑖conv, which allows for the
pruning of the 𝑖-th entire convolution module in each block.

• LAYER-WISE HIDDEN MASK zHIDDEN . We prune the hidden
dimensions of the encoder layers to enable more flexibility
by using global and local masks, denoted as zhidden. The
global mask, zhid-g, determines the size of hidden represen-

tations across all encoder layers, while the local mask, zhid-l,
controls the hidden size within an encoder layer.

2.2. Learning the optimal mask under a desired sparsity

Based on the hybrid pruning granularity proposed in Sec-
tion 2.1, this paper designs an 𝐿0-based pruning method (as
shown in Fig. 1b) that gradually reaches a target sparsity dur-
ing the pruning training process and learns the optimal sparsity
allocation according to the ASR task loss. Moreover, we com-
bine a layer-wise knowledge distillation with pruning to further
enhance the performance.
Sparsity-aware Constraint. With the use of pruning masks,
we can measure the number of retained model parameters and,
thus, calculate the inference cost. Formally, the expected model
parameters after pruning can be calculated as follows:

S(z) =
𝐿∑︁
𝑖=1

[S(z)𝑖FFN 1 + S(z)𝑖Attn + S(z)𝑖CNN + S(z)𝑖FFN 2] (2)

where 𝐿 is the number of encoder layers and S(z)𝑖 denote the
parameters of different modules in 𝑖-th layer after pruning. We
calculate the retained parameters of each module as follows:

S(z)𝑖FFN 1 = ∥z𝑖FFN 1∥0 × (2 × ∥z𝑖,hid-g∥0 + ∥z𝑖,hid-l∥0)
S(z)𝑖Attn = ∥z𝑖hid-l∥0 × ∥z𝑖head∥0 × Shead

S(z)𝑖CNN = ∥z𝑖hid-l∥0 × ∥z𝑖conv∥0 × Sconv

S(z)𝑖FFN 2 = ∥z𝑖FFN 2∥0 × (2 × ∥z𝑖,hid-l∥0 + ∥z𝑖,hid-g∥0)

(3)

Similarly, the FLOPs value S(z)FLOPs of the pruned model
can be obtained, thus providing an estimation of the computa-
tional cost that would be required on edge devices.
Sparse Allocation Optimization based on 𝐿0 Regulariza-
tion. Now, we introduce a method for determining the values
of masks for pruning. Unlike magnitude pruning, which sets
masks based on the values of weights, our proposed approach
seeks to jointly learn masks and model parameters so that the
resulting model can achieve minimal task empirical risk while
meeting the desired sparsity. To achieve this, a 𝐿0 regularization
term Lreg [26] is added to the optimization problem, turning the
pruning problem into an end-to-end learning problem.

L = Ltask (θ, z) + _Lreg (z) (4)
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However, these binary masks z are discrete values and non-
differentiable [27]. To address this challenge, we use the repa-
rameterization method with the hard concrete distribution pro-
posed by [26]. Specifically, masks z can be sampled from a
random variable u ∼ 𝑈 (0, 1) distribution:

t = sigmoid(log
u

1 − u +α); z = min(1,max(0, t × (𝑟 − 𝑙) + 𝑙))
(5)

Where 𝑙 < 0 and 𝑟 > 0 are two constants, with the common
practice of setting 𝑙 to -0.1 and 𝑟 to 1.1, parameters α are learn-
able. Then, the 𝐿0 regularization term can be regulated as a
function of the cumulative density function 𝑄(t ≤ 0|α), which
will be differentiable. The expectation of mask z in Eq. 1 can
be expressed as,

Ez∥z∥0 = 1 −𝑄(t ≤ 0|α) = 1 − sigmoid(log
t − 𝑙

𝑟 − t −α) (6)

Next, we augment 𝐿0 regularization to better control the
achieved model sparsity. The _ in Eq. 4 is used to balance the
trade-off between model accuracy and sparsity. However, it re-
quires careful hyper-parameter tuning to make sure it converges
to a desired sparsity. To effectively control the final model spar-
sity, we follow [28] and replace the original 𝐿0 regularization
with a Lagrangian multiplier. Let 𝑠 denote the target model size
after pruning, and S(z) denote the expected model parameters
determined by the masks z in Eq. 2. We impose an equality
constraint S(z) =𝑠 by introducing a violation penalty:

L𝑟𝑒𝑔 (z) = _1 (S(z) − 𝑠) + _2 (S(z) − 𝑠)2 (7)

where _1 and _2 are automatically adjusted using the AdamW
optimizer [29].
Combing Pruning and Knowledge Distillation (KD). The
combination of knowledge distillation and pruning has been
shown to perform better than pruning alone [21, 19]. Previous
works typically adopt a cross-entropy distillation loss between
the teacher and student models in the final prediction layer. Our
method, however, employs a layer-by-layer distillation to best
utilize the layerwise semantic information in the teacher model.
Through this guidance, the pruned model is encouraged to pre-
serve more detailed layerwise semantic knowledge, leading to
improved accuracy.

Specifically, we use the original unpruned model as the
teacher and the model under pruning as the student. For a Con-
former model with 𝐿 encoder layers, our layerwise knowledge
distillation aims to minimize the average distance between the
hidden states of each encoder layer of the teacher and student
models, measured by the Mean Squared Error (MSE) loss.

To this end, the full training objective is a combination of
the aforementioned objectives:

L = Ltask (θ, z) + _Lreg (z) + 1
𝐿

𝐿∑︁
𝑖=1

LMSE (h𝑖stu,Wlayer · h𝑖tea)

(8)
where h𝑖tea and h𝑖stu represent the 𝑖-th layer hidden outputs of
the teacher and student models, respectively. Wlayer denotes
the transformation matrix between h𝑖tea and h𝑖stu, which can im-
prove the distillation performance.

3. Experiments
3.1. Experimental Setup

Model and dataset. We apply our pruning method on the
Conformer-Transducer model and evaluate its performance on

Table 1: The WER results in the Librispeech test set varied
across different sparsity targets. Our results (both sparsity-
aware and FLOPs-aware) are represented by “Ours (Sparsity)”
and “Ours (FLOPs)”, respectively.

Sparsity Methods Test-
clean

Test-
other

RTF Model Size (MB)

0% Conformer 2.86 6.10 0.193 75.5

20%

OMP [16] 3.12 6.41 0.174 (-9.7%) 61.9 (-18.1%)
PARP [16] 3.12 6.24 0.175 (-9.1%) 61.9 (-18.1%)
SVD [30] 4.23 8.59 0.180 (-6.4%) 60.3 (-20.2%)
Ours (Sparsity) 2.96 6.09 0.171 (-11.3%) 60.2 (-20.3%)
Ours (FLOPs) 2.88 6.14 0.174 (-9.9%) 61.6 (-18.4%)

30%

OMP [16] 3.28 6.99 0.164 (-14.9%) 53.8 (-28.7%)
PARP [16] 3.31 6.83 0.165 (-14.2%) 53.8 (-28.7%)
SVD [30] 4.70 9.69 0.171 (-11.2%) 52.7 (-30.2%)
Ours (Sparsity) 3.05 6.29 0.164 (-14.8%) 52.1 (-31.0%)
Ours (FLOPs) 3.08 6.41 0.161 (-16.2%) 47.3 (-37.4%)

40%

OMP [16] 3.56 7.55 0.152 (-21.0%) 45.8 (-39.3%)
PARP [16] 3.54 7.39 0.153 (-20.8%) 45.8 (-39.3%)
SVD [30] 4.75 9.76 0.163 (-15.6%) 45.2 (-40.2%)
Ours (Sparsity) 3.12 6.61 0.152 (-21.1%) 44.1 (-41.6%)
Ours (FLOPs) 3.15 6.88 0.152 (-21.1%) 40.0 (-47.1%)

50%

OMP [16] 3.57 8.02 0.145 (-24.8%) 37.8 (-50.0%)
PARP [16] 3.56 7.83 0.147 (-23.7%) 37.8 (-50.0%)
SVD [30] 4.78 9.84 0.151 (-21.6%) 37.7 (-50.1%)
Ours (Sparsity) 3.27 6.89 0.144 (-25.0%) 37.1 (-50.9%)
Ours (FLOPs) 3.29 7.17 0.139 (-28.1%) 36.7 (-51.4%)

the standard LibriSpeech dataset [20], which contains 960 hours
of training speech data. Specifically, the model consists of 18
encoder layers and 2 decoder layers. Each encoder layer has
512 hidden dimensions, 8 heads, 1024 FFN intermediate dimen-
sions, and convolution with kernel size of 3. In our work, we
only mask and prune modules in encoder layers.
Pruning. Before pruning, we follow the training receipts in
Conformer[1] to pre-train the model until convergence. Then,
we set various sparsity ratios of 20%, 30%, 40%, 50% and apply
our approach on the pre-trained model under each sparsity ratio.
We consider both the FLOPs sparsity ratio and model parameter
size ratio as discussed in Sec. 2.2. To learn the pruning masks,
we utilize three AdamW [29] optimizers, one for the ASR task
transducer loss, another for the 𝐿0 loss, and the third for the
Lagrangian constraint loss. The initial learning rates are set to
1e-2, -1e-2, and 3e-4, respectively. We set _ to 1. For each
sparsity ratio, we gradually increase the sparsity from 0 to the
target value within the first 10k steps, and then keep the target
value for the remaining 100k steps. All the experiments are
trained on 8 NVIDIA V100 GPUs using ESPnet1.
Baselines. We compare our approach with other widely-used
compression methods: SVD [30] and two magnitude pruning
methods (One-shot Magnitude Pruning (OMP), PARD [16]). In
particular, OMP and PARD are originally implemented for un-
structured pruning, which do not provide any benefits to infer-
ence latency. For a fair comparison, we implement OMP and
PARD using our structured pruning granularity setting.

To evaluate the performance of the pruned models, we re-
port the WER results on the LibriSpeech test, as well as the en-
coder model size and the inference real-time factor (RTF) of the
encoder part on a single-core Intel(R) Xeon(R) CPU (2.60GHz).

3.2. Main Results

Table 1 presents a summary of the WER results as well as RTF
achieved by various methods. To begin with, we compare the
performance of our pruned models with the original Conformer
model (0%). Notably, we are able to remove 20% of the unim-

1https://github.com/espnet/espnet
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Table 2: The WER results of different ablation settings on Lib-
rispeech test set. “w/o layer-wise hidden masks” means we re-
move layer-wise hidden dimension pruning and “w head prun-
ing” denotes only conducting head pruning.

Sparsity Methods Test-clean Test-other

20%

Ours (Sparsity) 2.96 6.09
w/o layer-wise hidden 2.98 6.24
w head level pruning 3.14 6.69
w/o layer-wise KD 2.95 6.19

30%

Ours (Sparsity) 3.05 6.29
w/o layer-wise hidden 3.12 6.45
w head level pruning 3.37 7.03
w/o layer-wise KD 3.07 6.30

40%

Ours (Sparsity) 3.12 6.61
w/o layer-wise hidden 3.26 6.89
w head level pruning 3.58 7.39
w/o layer-wise KD 3.15 6.73

50%

Ours (Sparsity) 3.27 6.89
w/o layer-wise hidden 3.41 7.19
w head level pruning 3.72 7.82
w/o layer-wise KD 3.29 6.93

portant model parameters from the Conformer model without
any significant loss in WER performance. This results in an
11.3% inference acceleration. As the sparsity increases, we
observe a slight drop in WER performance but with a notable
improvement in inference acceleration. Interestingly, even at a
high sparsity ratio of 50%, our pruned model still achieves bet-
ter performance than the open-source Conformer2, with note-
worthy WER of 3.27 and 6.89 on the test-clean and test-other
datasets, respectively. This translates into a 25% reduction in
RTF, demonstrating the effectiveness of our pruning approach.

Table 1 clearly demonstrates that our method outperforms
all the baseline state-of-the-art structured pruning methods,
achieving significantly better results at all sparsity ratios. SVD
baseline exhibits poor performance on the LibriSpeech dataset,
which is known to be particularly sensitive to model parame-
ters. When compared to the magnitude-based method, our ap-
proach incurs smaller WER losses, especially on the test-other
dataset, with relative WER loss percentages of 8.23%/5.25%,
7.91%/11.60%, 15.23%/15.36%, and 10.47%/18.55% at 20%,
30%, 40%, and 50% sparsity targets, respectively. Compared
to PARD, our approach achieves relative WER loss improve-
ments of 8.30%/2.56%, 9.21%/8.98%, 14.74%/12.82%, and
10.01%/15.42% on the test-clean and test-other datasets, re-
spectively. Notably, as the sparsity targets increase, our method
achieves a greater advantage in terms of WER loss.

3.3. Ablation Study

We now conduct ablation studies to evaluate (1) the effective-
ness of our hybrid pruning granularity and (2) the effectiveness
of combining knowledge distillation with pruning. For exper-
iment (1), we compare our current setting with head pruning
(w head level pruning), which is widely-used in other NLP
tasks [31, 32], and we compare with disabling the pruning for
layer-wise hidden dimension (w/o layer-wise hidden). For ex-
periment (2), we remove layer-wise KD for evaluation.

Table 2 demonstrates the effectiveness of our proposed hy-
brid pruning approach, which enables us to selectively prune
fine-grained units such as heads, Conv, FFN, and layer-wise
hidden dimensions. In contrast, conducting head pruning alone
leads to a significant loss of 32.9% in WER because crucial
heads can be removed to achieve high sparsity. Disabling layer-
wise hidden pruning also slightly degrades the performance.

2https://github.com/espnet/espnet/blob/master/egs/librispeech/asr1
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Figure 2: The distribution of the remaining ratio across different
modules and layers when aiming for different sparsity targets.

Table 2 also suggests that the proposed combination of
knowledge distillation and pruning effectively improves the
ASR performance. It is worth noting that layer-wise KD con-
sistently demonstrates an absolute WER improvement of 0.04-
0.13 under different sparse targets. This can be attributed to
the fact that layer-wise KD facilitates the transfer of hierarchi-
cal information from the teacher model to the student model on
a layer-by-layer basis, which encourages the pruned model to
retain more semantic knowledge.

3.4. Analysis of Pruning Results

Finally, we study the pruned Conformer structures produced by
our approach. Fig. 2a shows the retained parameters ratios for
the 50% sparsity model. Interestingly, the Conformer model
shows more redundancy in the bottom layers. Specifically, our
approach removes up to 76.7% parameters at the bottom layers
(Layer1-10), while only 6.08%-11.9% are removed at the top
layers (Layer 16-18). The results suggest that the Conformer-
Transducer model exhibits a bottom-heavy redundancy and top-
sensitive pattern in the ASR task. Moreover, the model displays
varied redundancy in different modules. Compared to attention
and CNN modules, we prune more parameters in FFN layers.

Fig. 2b shows the remaining hidden dimensions of various
layers at different sparsity ratios. As the target sparsity ratio
increases, more hidden dimensions are pruned. Notably, at the
target sparsity of 50%, the lower layers can prune up to 15%
of their dimensions, while deeper layers exhibit a very minimal
pruning. These findings suggest that deeper layer model param-
eters are crucial for ASR performance, and even slight changes
in their dimension sizes can have a significant impact.

4. Conclusion
In this paper, we propose a structured pruning algorithm that
boosts the efficiency of automatic speech recognition by prun-
ing unimportant modules with a hybrid granularity. We target
all levels of pruning in the Conformer model, including Atten-
tion heads, FFN layers, Conv module, and layer-wise hidden di-
mension. Our approach combines 𝐿0 regularization and knowl-
edge distillation to achieve optimal pruning decisions. Exper-
iments on LibriSpeech show that our method cuts model size
by 50% and CPU inference cost by 28%, with a minimal WER
performance loss, far exceeding the baseline model.
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