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Abstract

Most deep learning-based speech enhancement methods usu-
ally use supervised learning, which requires massive noisy-to-
clean training pairs. However, the synthesized training data can
only partially cover some realistic environments, and it is gen-
erally difficult or almost impossible to collect pairs of noisy
and ground-truth clean speech in some scenarios. To address
this problem, we propose an unsupervised speech enhancement
method that does not require any paired noisy-to-clean train-
ing data. Specifically, based on the optimal transport crite-
rion, the speech enhancement model is trained in an unsuper-
vised manner only using a noisy speech based fidelity loss and
a distribution divergence loss, by which the divergence between
the output and (unpaired) clean speech is minimized. Experi-
mental results show that the proposed unsupervised method can
achieve competitive performance with supervised methods on
the VCTK + DEMAND benchmark and better performance on
the CHiME4 benchmark.

Index Terms: Unsupervised learning, speech enhancement, op-
timal transport, deep learning, generative adversarial networks

1. Introduction

Speech enhancement aims to estimate the unseen clean speech
from the observed noisy speech to improve the perceptual
speech quality or recognition accuracy. The traditional speech
enhancement algorithms, based on the Wiener filter or statisti-
cal model, have been studied for decades [1]. In recent years,
thanks to the development of deep learning technology [2, 3],
speech enhancement methods based on deep neural networks
(DNNs) have made much progress [4, 5, 6, 7, 8], with denois-
ing performance significantly better than traditional methods.

Typically, DNN-based speech enhancement models are
trained in a supervised manner [9]. The training procedure re-
quires pairs of noisy speech as the inputs and ground-truth clean
speech as the outputs, and the noisy speech utterance is simu-
lated by adding noise to the clean speech. In order to improve
the generalization performance of the denoising model, mas-
sive (e.g., thousands of hours of) noisy-to-clean training data
are usually used. However, the simulated noisy speech cannot
cover all the realistic environments. Once a domain mismatch
exists between simulation and reality, the performance of the
denoising model would deteriorate significantly. Moreover, col-
lecting pairs of noisy speech and ground-truth clean speech in
some practical application scenarios is generally difficult or al-
most impossible. This motivates us to develop an unsupervised
learning method for speech enhancement that does not require
any paired noisy-to-clean data for training.

This work was supported by the National Natural Science Founda-
tion of China (NSFC) under Grant 62271314.
*corresponding author.

Several semi-supervised and self-supervised learning meth-
ods have been proposed for speech enhancement to reduce the
reliance on paired training data. In [10], a RemixIT training
scheme, which does not need isolated in-domain speech and
noise, is proposed to train the speech enhancement model only
using noisy speech. In [11], a denoising autoencoder with a
linear regression decoder framework is proposed for speech en-
hancement. The model is trained in a self-supervised learning
fashion and uses noisy speech as both the input and the train-
ing target. However, the RemixIT is trained with a teacher-
student training framework that requires a pre-trained teacher
model, and the work [11] requires setting empirical parameters
in calculating the linear transformation matrix. On the other
hand, several unsupervised adaptation methods based on op-
timal transport have been proposed for speech enhancement
[12] and spoken language identification [13]. The work [12]
proposes a discriminator-constrained optimal transport network
(DOTN) for exploiting the domain knowledge. The work [13]
uses a similar neural adaptation model to address the statisti-
cal distribution mismatch between the training and testing data.
The results in [12, 13] show that introducing an additional opti-
mal transport neural network makes minimizing the speech sig-
nal distribution between the source and target domains feasible.

Inspired by the unsupervised noise adaptation for speech
enhancement [12] and our recent work of optimal transport
for unsupervised image denoising [14], this paper proposes a
novel unsupervised speech enhancement method without the
need for paired noisy-to-clean training data. Concretely, based
on the optimal transport theory, the denoising learning problem
can be formulated as unsupervised learning with a constraint
on the output distribution and can be further relaxed into an
unconstrained optimization problem for implementation. The
speech enhancement model is trained in an unsupervised man-
ner only using a noisy speech based fidelity loss and a distri-
bution divergence loss. The discriminator is optimized to mini-
mize the probability distribution between the estimated and un-
paired clean speech. To the best of our knowledge, we are the
first to use optimal transport for unsupervised speech enhance-
ment. The main contributions of this work are as follows: /)
We propose a novel unsupervised speech enhancement learning
method that does not require any paired noisy-to-clean train-
ing data but achieves competitive performance with supervised
methods. 2) We conducted extensive speech recognition exper-
iments and found that the proposed method is superior to the
supervised method, especially using the test time adaptation.

2. Optimal Transport for Unsupervised
Denoising Learning

Let Py and Px denote the probability distributions of two
datasets ) and X, respectively. Optimal transport aims to find
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the most efficient transport from v ~ Py to u ~ P that mini-
mizes the total cost [15]

ir;f /y c(f(y), v)dv(y)

s.t.

(D
fav=p,

where f : ) — X is a transport map that transports v ~ Py
top ~ Px,c: Y x X — RV is the cost function of the
transportation, fxv denotes the transport of v by f, and fuv =
1 is the constraint on the transported distribution.

In the absence of paired noisy-to-clean training data, the
unsupervised denoising learning using optimal transport can be
formulated as [14]

mfil’lEwaP’y (ly = f(y)Hg)

s.t.

)
Psw) = Px,

where f(-) is the denoising neural network, and || - ||, is the
£p-norm with p > 1. Obviously, the optimization problem (2)
is an application of the optimal transport problem in (1).

In implementation, the constrained optimization problem in
(2) can be relaxed to an unconstrained one as

m;nEMy(Hy — fWIR) + Ad(P sy, Px) A3)

where d(-, -) measures the divergence between two probability
distributions, and A > 0 is a balance factor. It has been proved
that, the formula in (3) has the same solution as the constrained
one in (2) under certain conditions [14].

3. The Proposed Method

3.1. Problem Formulation

For speech signal, we operate on the short-time Fourier trans-
form (STFT) domain and consider the additive signal model,

Y =X+N, “)
where Y € CF*T, X € CF*T and N € C"*7 are the STFT
of the time domain noisy speech y, clean speech x, and additive
noise n, respectively. F' and 1" denote the number of frequency
bins and frames, respectively.

The goal of speech enhancement is to find a nonlinear
function (i.e., a denoising neural network) fo such that X =
fo(Y) ~ X. The most popular supervised learning method is
training the denoising network fy that minimizes the loss of the
denoised speech and clean speech, i.e., £L(fy(Y),X). In con-
trast, we propose minimizing the loss of the denoised and ob-
served noisy speech, i.e., £L(fo(Y),Y). More specifically, the
denoising network is learning in a purely unsupervised manner.
To prevent the denoising network from just learning an identity
function, we use an additional adversarial loss of the unpaired
clean speech, which is inspired by our recent work of optimal
transport for unsupervised image denoising [14].

3.2. Unsupervised Speech Enhancement

Figure 1 illustrates the diagram of the proposed unsupervised
speech enhancement training method. The noisy speech y ~
Py and clean speech x ~ Py are independent, i.e., they are un-
paired training data. fp denotes the generator (i.e., the denois-
ing model), fs denotes the discriminator, and they are trained
in an adversarial training process, using generative adversarial
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Figure 1: Illustration of the proposed method. The noisy and
clean speech, y ~ Py and x ~ Py are unpaired. fg and fq are
the generator and discriminator, respectively. Ly, and L a4, are
the £, and adversarial losses, respectively.

networks (GANSs) [16]. £, and £ a4, are the ¢, loss and adver-
sarial loss, respectively. For simplicity, the STFT and inverse
STFT (iSTFT) are omitted in the figure and the following dis-
cussion.

The speech enhancement model is trained in an unsuper-
vised manner only using the noisy speech based fidelity loss
(i.e., L, loss) and an additional adversarial loss,

Lo =aply+ Lagw(G; D)

apllfo¥) = ¥IE — By, s (fo(p))] O

where o, > 0 is a weight factor, £ 44, (G; D) is the adversarial
loss for training the generator. It is clear that the loss in (5) is an
implementation of the optimization problem in (3), and we use
the Wasserstein GAN (WGAN) [17] in implementation, with
which d(-, -) corresponds to the Wasserstein distance.

‘We use the WGAN loss with gradient penalty (WGAN-GP)
[18] to train the discriminator,

Lp = Ladv (D§ G) + Ofgp['gp
= Ey~py [fo(fo(¥))] — Ex~pn [fo(x)]
+ O‘ngx/NlPx/ [(HVX’ﬁb(x/)H - 1)2]7

(6)

where L 44,(D; G) is the adversarial loss for training the dis-
criminator, L), is the gradient penalty, and g, is the penalty
weight. X' ~ P,/ denotes uniform sampling along the lines
between y ~ Py and x ~ Px.

3.3. Neural Network Architecture

Figure 2 illustrates the neural network architecture of the gener-
ator and discriminator. The generator follows the U-Net archi-
tecture with Neyp. Conv2D, Ny, dual-path [19], and Nge. Con-
vTrans2D blocks. The Conv2D/ConvTrans2D block includes
Conv2D/ConvTrans2D and batch normalization layers followed
by PReLu activation. The dual-path block [19] includes two re-
current neural network (RNN) layers that sequentially exploit
the frequency feature and the time dependency. In addition, a
skip connection from the input to the output is used for guid-
ing the neural network to learn a masking other than a map-
ping function, and a non-linear function is adopted for bounding
the mask. As for the discriminator, it contains Ng;s. Conv2D
blocks and two linear layers. The Conv2D block of the discrim-
inator has the same structure as the generator’s, except spectral
normalization and LeakyReLLU are used. The two linear layers
are also constrained by spectral normalization to make the dis-
criminator training more stable [20]. The experimental section
will introduce the hyper-parameters and training details of the
neural networks.
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Figure 2: Neural network architecture. The generator uses
the U-Net architecture with Nen. Conv2D, Ng, dual-path,
and Nge. ConvTrans2D blocks. The discriminator uses Ng;sc
Conv2D blocks and two linear layers.

4. Experiments
4.1. Datasets

We conduct speech enhancement experiments on VCTK + DE-
MAND benchmark dataset [21]. The benchmark dataset has
two training subsets, and we use the 28-speaker subset dataset
that includes 11572 utterances. The test dataset includes 824 ut-
terances from two unseen speakers. The noisy utterances in the
training subset are mixed at signal-to-noise ratios (SNRs) from
0 dB to 15 dB with an interval of 5 dB, while the test subset uses
different SNRs of {2.5, 7.5, 12.5, 17.5} dB. In our experiment,
we randomly select 1000 utterances from the subset as the val-
idation dataset and use the rest, 10572, as the training dataset.
The dataset is recorded at 48 kHz, and we down-sample all ut-
terances to 16 kHz.

We conduct automatic speech recognition (ASR) experi-
ments on the CHiIME4 dataset [22]. The dataset consists of
real and simulated 6-channel audio recoded/simulated in four
environments (bus, cafe, pedestrian, and street). The training,
validation, and test subset include 8738 utterances (7138 simu-
lated and 1600 real), 3280 utterances (1640 simulated and 1640
real), and 2640 utterances (1320 simulated and 1320 real), re-
spectively. In addition, for the real data of the training and val-
idation subsets, there is a close-talking reference speech (i.e.,
channel 0).

4.2. Experimental Setups
4.2.1. Speech Signal

In the STFT, we adopt a hamming window with a length of 400
samples and a hop size of 100 samples to segment the speech
signal, and the size of the Fourier transform is 512. The speech
segment length we feed to the neural network is 2 seconds,
which corresponds to 317 frames. Thus, the number of fre-
quency bins F' and frames 7" are 257 and 317, respectively. We
concatenate the real and imaginary parts of the complex-valued
STFT representation to real numbers on the channel dimension.
As aresult, the shape of the tensor we feed to the neural network
is B x 2 x F' x T, where B is the batch size.
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4.2.2. Loss Functions

Following the WGAN-GP [18], we set o,gp, = 10 for the dis-
criminator loss in (6). As for the generator loss in (5), we set
p = 1 empirically and set the hyper-parameter o, = 10 by grid
search.

4.2.3. Neural Networks

In the generator, the Conv2D block size Nen. is 3, and the con-
volutional layers’ input and output channel numbers are (2, 32),
(32, 64), and (64, 128), respectively. The kernel size and stride
of the three convolutional layers are set to (5, 2) and (2, 1). After
applying the encoder, the shape of the tensor is Bx 128 x32xT".
The dual-path block size Ny, is 2, and we use the long short-
term memory (LSTM) layers to compose the block. The Con-
vTrans2D block size Nge. is 3, and the hyper-parameters of
each block are set to the mirror of the encoder. In the discrimi-
nator, the Conv2D block size Ny;sc is 6, and the convolutional
layers’ output channel numbers are 8, 16, 32, 64, 128, and 128,
respectively. The kernel size and stride of the six convolutional
layers are set to (5, 2) and (2, 2), and the size of the input fea-
ture and output feature of the two linear layers are (256, 64) and
(64, 1), respectively. According to the settings, the footprints
of the generator and discriminator are about 1.5 million and 0.7
million, respectively.

4.2.4. Training Details

Both the generator and discriminator are initialized with Xavier
and trained with Adam optimizer. The learning rate, ncritic
in the WGAN-GP training [18], and training epoch are set to
0.0001, 10, and 1000, respectively. We implement the algorithm
using the PyTorch Lightning tools [23] and train all models on
a High-Performance Computing (HPC) center.

4.3. Experimental Results
4.3.1. Speech Enhancement

In the speech enhancement experiments, we use one clas-
sical MMSE-based method, four supervised learning GAN-
based methods, and one unsupervised method for compari-
son. The classical MMSE-based method is OMLSA [24]. The
four GAN-based methods are SEGAN [25], ISEGAN [26],
DSEGAN [26], and SASEGAN [27], respectively. The un-
supervised method is DOTN [12]. We use the wideband ver-
sion PESQ (PESQ) [28], extended STOI (eSTOI) [29], scale-
invariant SNR (SI-SNR), Segmental SNR (SegSNR) and DNS-
MOS [30] to evaluate speech quality. In addition, composite
measures for signal distortion (CSIG), noise distortion (CBAK),
and overall quality (COVL), which follow the ITU-T P.835
methodology, are also used as evaluation metrics.

The audio samples of the compared methods and supple-
mentary materials are available online'. Table 1 shows the eval-
uation results of the compared method on the VCTK + DE-
MAND test set, in which the highest score of each evaluation
metric is shown in bold. For the classical OMLSA method,
we used the Matlab source code provided by the authors to
perform noise reduction on the test set. For the SEGAN and
SASEGAN methods, we use the pre-trained models to estimate
the denoised speech. For the DOTN method, we train the model
with the source code provided by the author. For the ISEGAN
and DSEGAN methods, the pre-trained models are unavailable,

'https://jiangfwenbin.github.io/UnSE/



Table 1: Speech enhancement results of the compared methods on the VCTK + DEMAND dataset, ‘-’ indicates that the evaluation

results are not available.

Method Category ~ PESQ eSTOI SI-SNR(dB) CSIG CBAK COVL SegSNR(dB) DNSMOS
Noisy - 197 079 8.45 335 244 263 1.68 2.70
OMLSA [24] Classical 236  0.80 17.28 262 287 240 8.52 2.72
SEGAN [25] 217 082 16.33 351 294 282 7.73 2.97
ISEGAN[26] ¢ . . 224 - - 323 295 269 8.17 -
DSEGAN [26] uperv 2.35 - - 355 310 293 8.70 -
SASEGAN [27]° 239 084 15.63 369 304 3.03 7.42 3.05
DOTN[12]  Unsupervised 228  0.80 14.20 270 276 243 6.18 2.97
Proposed Unsupervised 245 0.80 15.96 369 305 3.5 7.47 2.92

* We use the SASEGAN-10 model of the last checkpoint.

and we use the evaluation results given by the authors (eSTOI,
SI-SNR, and DNSMOS are not provided in the original paper).
The experimental results in Table 1 demonstrate that: /)
the OMLSA method obtains the highest SI-SNR score; 2) the
SASEGAN method has the best performance in terms of eSTOI
and DNSMOS; 3) the proposed unsupervised method outper-
forms the DOTN method in most evaluation metrics and yields
the highest PESQ-WB, CSIG, CBAK, and COVL scores among
all comparison methods. From the results, we can conclude that
the proposed unsupervised learning based speech enhancement
method is superior to the DOTN and achieves competitive per-
formance with the popular supervised learning-based method.

4.3.2. Speech Recognition

In the speech recognition experiments, we use the same neu-
ral network architecture (i.e., the generator in Figure 2) as the
front-end denoising model for a fair comparison. The speech
recognition model only uses the log-Mel spectrogram as an in-
put feature, so we only operate the magnitude spectrum in the
denoising model. Thus, the tanh nonlinear activation for bound-
ing the mask in Figure 2 is replaced with the sigmoid.

We compare one supervised and three unsupervised learn-
ing methods to train the front-end denoising model. The su-
pervised learning method used 1-channel simulated training
data (7138 paired utterances) to train the denoising model (de-
noted by supervised (simu)). For the unsupervised learning, we
trained three models: one using the same data as the supervised
learning but in an unpaired manner (denoted by unsupervised
(simu)), another using 6-channel real recordings of the training
set as noisy speech and channel 0 recordings as unpaired clean
speech (denoted by unsupervised (real)), and a third pre-trained
with the previous method and fine-tuned on real recordings of
the test set (denoted by unsupervised (real) + test time adap-
tation (TTA)). It should be noted that only the noisy speech is
available for the test time adaptation, the unseen clean speech is
entirely unavailable, and the model is adapted in a purely unsu-
pervised manner.

We use the three models of Whisper [31] (i.e., tiny, base,
small) for the experiments and use word error rates (WERs in
percentage) as the evaluation metric. Table 2 shows the exper-
imental results on the CHiME4 dataset. The results demon-
strate that: /) the supervised speech enhancement method de-
teriorates the speech recognition performance, which is con-
sistent with the results in [32]; 2) as a front-end noise reduc-
tion model for speech recognition, the proposed unsupervised
learning method consistently outperforms the supervised learn-
ing method; 3) with the test time adaptation, the unsupervised
method can further improve the ASR performance for the un-
seen test data. From the results, we can conclude that the pro-
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posed unsupervised speech enhancement method is superior to
the supervised method for speech recognition, especially using
the test time adaptation.

Table 2: WERs (%) results of speech recognition on the
CHiIME4 dataset, TTA denotes for test time adaptation.

Method ASR model” Development Evaluation
simu real simu real

tiny 2347 1617 28.62 28.84
Noisy base 17.07 1044 22,60 17.92
small 1042 688 1425 10.68
S sed tiny 18.76  20.87 2224 44.53
“(P‘?mze base 13.62 1424 1598 3220
stmu small 1046 1348 1230 29.64
U ed tiny 1836 17.06 18.61 32.53
“S(“Perv)lse base 1237 1111 1214 2071
sumu small 839 726  8.88 1545
U ed tiny 1831 1828 19.13 31.78
“S‘(‘perl;‘“ base 1296 1163 1287 21.20
rea small 844 7.0 831  12.87
U od tiny 1829 18.12 19.13  30.76
(“S}‘BirTV‘TSz base 1235 1145 1329 2124
rea small 817 7.14 825 1198

* We use the three speech recognition models (English-only) of
Whisper, https://github.com/openai/whisper.

5. Conclusions

This paper proposed an unsupervised learning method for
speech enhancement without requiring paired noisy-to-clean
training data, which is based on the optimal transport theory.
Concretely, we only use the noisy speech as the input and
train the denoising model with a fidelity loss plus an adversar-
ial loss. Meanwhile, the training objective of the discrimina-
tor is to minimize the probability distribution of the enhanced
speech of the denoising model and the unpaired clean speech.
The speech enhancement results on the popular benchmark
dataset (VCTK + DEMAND) show that the proposed unsuper-
vised method can achieve competitive performance with the su-
pervised learning methods. Furthermore, the speech recogni-
tion results on the CHiME4 benchmark show that the proposed
unsupervised method consistently outperforms the supervised
learning method, especially using test time adaptation. Never-
theless, the proposed method is sensitive to hyper-parameters of
the loss function. Future work includes studying more sophisti-
cated models and loss functions to make the training procedure
more stable.
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