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Abstract

Cross-domain speech emotion recognition (SER), which uti-
lizes the source domain to recognize the emotions in the tar-
get domain, has received significant attention in recent years.
In this paper, we propose a novel unsupervised transfer learn-
ing method named unsupervised transfer components learn-
ing (UTCL) for cross-domain SER. Specifically, we first learn
a common projection for the cross-domain data, in which a
PCA-like strategy is conducted for the source and target do-
mains separately. Meanwhile, we design a simple strategy to
ensure all cross-domain samples share similar manifold struc-
tures so that the learned common projection can preserve more
transfer components. Furthermore, a novel adaptive structured
graph strategy is designed to further narrow the gap between the
cross-domain samples. Comprehensive experimental results on
several benchmark datasets demonstrate that our method can
achieve better performance in comparison with several state-of-
the-art methods.
Index Terms: cross-domain, unsupervised transfer learning,
speech emotion recognition, structured graph

1. Introduction
Speech emotion recognition (SER) is an important research
problem in the fields of pattern recognition and speech sig-
nal processing, which has gained widespread attention in many
practical application fields [1, 2]. The goal of SER is to auto-
matically identify human beings’ emotional states from speech
signals, e.g. happiness, surprise, disgust, sadness, anger, and
fear [1].

In real scenarios, the gender, ages, languages, and speaking
styles of speakers might be different, and the recording scenes
and equipment also change over time. These differences would
lead to the domain mismatch problem, in which the training
data and test data might be from different domains and follow
different distributions [3]. In this situation, directly deploying
the traditional methods could result in a significant decrease in
the recognition performance. Thus, in this paper, we focus on
tackling the cross-domain SER problem.

Transfer learning is an effective way to reduce the discrep-
ancy between domains [4]. For instance, in [5], a joint dis-
tribution adaptation (JDA) framework is developed for feature
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transfer. In [6], a balanced distribution adaptation (BDA) ap-
proach is proposed for transfer learning, which can adaptively
leverage the importance of the marginal and conditional distri-
bution discrepancies. In [3], a feature selection based transfer
subspace learning method is presented for cross-corpus SER.
In [7], a discriminative transfer feature and label consistency
(DTLC) approach is put forward for visual domain adaptation
problems.

The above-mentioned methods utilize the label information
to improve the performance of transfer learning, which can be
categorized as semi-supervised transfer learning [8]. This strat-
egy has achieved satisfactory results, but it relies on label infor-
mation. In real life, a large amount of data in source domain
might be unavailable. Thus, unsupervised learning [9] is an ef-
fective strategy to solve this problem. In the past decade, var-
ious unsupervised transfer learning algorithms have been pre-
sented. For instance, in [10], Pan et al. present a transfer
component analysis (TCA) method, which extends PCA to a
transferable manner. In [11], Chang et al. propose a novel
multi-scale convolutional sparse coding (MSCSC) method for
unsupervised transfer learning. In [12], Siddhant et al. propose
a faster and simpler unsupervised pre-training method called
ELMo-Light (ELMoL) for spoken language understanding. In
[13], Noori Saray et al. develop a joint distinct subspace learn-
ing and unsupervised transfer classification (JDSC) approach
for visual domain adaptation. In [14], Li et al. propose a
transferable discriminant linear regression (TDLR) approach
for cross-database SER. However, these methods only consider
the common information and neglect the domain-specific infor-
mation, which is vital to the performance of transfer learning
[4].

To tackle the above-mentioned problems, in this paper, we
propose a novel unsupervised transfer learning method named
unsupervised transfer components learning (UTCL) method for
cross-domain SER. In our method, we consider both the com-
mon and domain-specific principal components in the process
of knowledge transfer. In addition, we design an adaptive struc-
tured graph as the distance metric, which can efficiently narrow
the gap between the source and target domains. For better illus-
tration, we show the flowchart of our method in Fig. 1.

2. Unsupervised Transfer Components
Learning

2.1. Notations and symbols

Let Xs ∈ Rm×ns and Xt ∈ Rm×nt be the source and target
feature matrices, respectively, where ns and nt are the num-
bers of source and target samples, respectively, and m is the
dimensionality of features. Define X ∈ Rm×n = [Xs, Xt],
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where n = ns + nt. Let P ∈ Rm×d be the matrix of pro-
jection, where d is the dimensionality of the common subspace.
Qs ∈ Rm×d and Qt ∈ Rm×d denote the reconstruction ma-
trices of the source and target domains, respectively. For an ar-
bitrary matrix W , the Frobenius norm and the ℓ2,1-norm of W
are defined as ||W ||F and ||W ||2,1, respectively, and Tr(W )
denotes the trace of W .

𝑆𝑜𝑢𝑟𝑐𝑒 𝑑𝑎𝑡𝑎
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Figure 1: The flowchart of our method.

2.2. The proposed method

2.2.1. Common subspace learning

Different from existing transfer learning algorithms [4], which
focus on learning the common information across domains, we
aim to simultaneously obtain the common and domain-peculiar
information. To this end, we learn a common projection and
conduct a PCA-like strategy in the source domain and the target
domain separately. Thus, the common subspace can preserve
more principal components of the source and target domains
when performing knowledge transfer. This problem can be for-
mulated as the following equation:

min
P,Qs,Qt

||Xs −QsP
TXs||2F + ||Xt −QtP

TXt||2F + β||P ||2,1

s.t.PTP = I,QT
s Qs = I,QT

t Qt = I
(1)

where P is the common projection that preserves the principal
transfer components, Qs and Qt represent the reconstruction
matrices that map the common subspace into the original source
and target domains, respectively. The PTP = I , QT

s Qs = I
and QT

t Qt = I are the orthogonal constraints. In addition, an
ℓ2,1-norm is imposed on the matrix P to help select represen-
tative features, and β is a regularization parameter to control its
sparsity.

By solving Eq. (1), we can obtain a common projection P
which preserves the common principal components. Then, we
can get the following equation:

Xs ≈ QsP
TXs

Xt ≈ QtP
TXt

QT
s Qs = I

QT
t Qt = I





⇒
QT

s Xs ≈ PTXs

QT
t Xt ≈ PTXt

}
(2)

We hope that PTXs and PTXt share similar feature distri-
butions, i.e., ϕs(P

TXs) ≈ ϕt(P
TXt), in which all the cross-

domain samples follow similar manifold structure in the com-
mon subspace. According to [15], if two data points are closer,

the coupled data points in the projected low-dimensional sub-
space are also closer. Inspired by this, to eliminate the domain
shift, we use a simple but effective strategy, which is expressed
as follows:

min
Qs,Qt

||Qs −Qt||2F (3)

By minimizing Eq. (3), we can get the following conclusions:

Qs ≈ Qt ⇒ ϕs(Q
T
s Xs) ≈ ϕt(Q

T
t Xt) ⇒ ϕs(P

TXs) ≈ ϕt(P
TXt)

(4)
By integrating Eq. (1) into Eq. (3), we can get

min
P,Qs,Qt

||Xs −QsP
TXs||2F + ||Xt −QtP

TXt||2F

+ α||Qs −Qt||2F + β||P ||2,1
s.t.PTP = I,QT

s Qs = I,QT
t Qt = I

(5)

where α is a regularization parameter. By solving Eq. (5), we
get a common subspace where all the cross-domain samples
share similar manifold structure and can preserve more trans-
fer components.

2.2.2. Adaptive graph regularization

The objective function in Eq. (5) can narrow the gap across
domains efficiently. However, it only considers the global simi-
larity across domains. According to [16, 17, 18], the local simi-
larity is also virtual for the transferable performance. Thus, we
design an adaptive structured graph to further reduce the distri-
bution divergence across domains.

Given a similarity matrix S ∈ Rn×n, in which sij is the
element of S. sij can be regarded as the similarity between
xi and xj . The closer the two samples are, the larger sij is.
It is obvious that sij is inversely proportional to the distance
between xi and xj . For simplicity, the square of the Euclidean
distance is used to calculate the distance, which is expressed as
||xi − xj | |22. The process of determining sij can be regarded
as solving the following equation:

min
∑

i,j

||xi − xj | |22sij + λs2ij

s.t.∀i, sTi 1 = 1, 0 ≤ sij ≤ 1

(6)

Through Eq. (6), the exact connected components can be
contained by the similarity matrix S [19]. To facilitate the opti-
mization of Eq. (6), we transform it to the following equation:

minTr(XLsX
T ) + λ

∑

i,j

s2ij

s.t.∀i, sTi 1 = 1, 0 ≤ sij ≤ 1

(7)

where Ls = D − ST+S
2

is the Laplacian matrix, D is a diago-

nal matrix, in which
∑

j

(sij+sji)

2
denotes the i-th item. As Eq.

(1), we use the low-dimensional feature representation PTX to
represent the high-dimensional data matrix X . Thus, we refor-
mulate Eq. (7) as the following equation:

min
P

Tr(PTXLsX
TP ) + λ

∑

i,j

s2ij

s.t.∀i, sTi 1 = 1, 0 ≤ sij ≤ 1, PTP = I

(8)
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Combining Eq. (5) and Eq. (8), we can obtain the objective
function of our proposed method as follows:

min
P,Qs,Qt

||Xs −QsP
TXs||2F + ||Xt −QtP

TXt||2F + α||Qs −Qt||2F

+ β||P ||2,1 + γTr(PTXLsX
TP ) + λ

∑

i,j

s2ij

s.t.∀i, sTi 1 = 1, 0 ≤ sij ≤ 1, PTP = I,QT
s Qs = I,QT

t Qt = I
(9)

where γ is a trade-off parameter.

2.3. Optimization

In this subsection, we develop an alternative optimization algo-
rithm to solve our method. Since it is hard to directly optimize
Eq. (9), we rewrite it as follows:

L =||Xs −QsP
TXs||2F + ||Xt −QtP

TXt||2F + α||Qs −Qt||2F
+ βTr(PTGP ) + γTr(PTXLsX

TP ) + λ
∑

i,j

s2ij

+ Tr(ϕ(PTP − I)) + Tr(ϕ(QT
s Qs − I)) + Tr(ϕ(QT

t Qt − I))
(10)

where ϕ is a small Lagrange constraint, and G ∈ Rd×d is a
diagonal matrix [20]. The diagonal element of G can be written
as

Gii =
1

2
√

pTi pi + ε
(11)

where pi is the i-th row of P , and ε is a very small constant.
We solve Eq. (10) by updating one variable while fixing the

others. The steps are given as follows:
1) Fix S, Qs and Qt, and update P : We get the items

related to P . Taking the partial derivative of L w.r.t. P , we can
get the following equation:

∂L
∂P

=(XsX
T
s P +XtX

T
t P + βGP + γXLsX

TP + P

−XsX
T
s Qs −XtX

T
t Qt)

(12)
Set ∂L

∂P
= 0, and define Vs = XsX

T
s , Vt = XtX

T
t , we can get

the solution of P as

P = (Vs + Vt + βG+ γXLsX
T + I)−1(VsQs + VtQt)

(13)
2) Fix P , Qs and Qt, and update S: The problem (10)

can be converted into the following equation:

min
P

Tr(PTXLsX
TP ) + λ

∑

i,j

s2ij

s.t.∀i, sTi 1 = 1, 0 ≤ sij ≤ 1, PTP = I

(14)

We introduce an auxiliary matrix M ∈ Rn×n, in which mij =∣∣|PTxi − PTxj

∣∣ |22, Eq. (14) can be converted into the follow-
ing equation:

min
sTi 1=1,0≤sij≤1

∣∣∣∣|si +
1

2λ
mi

∣∣∣∣ |
2
2 (15)

where si is the vector of matrix S. Then we can update Ls

using Eq. (15).
3) Fix P , S and Qt, and update Qs: Eq. (10) can be

transformed into the following problem:

L = ||Xs −QsP
TXs||2F + ||Qs −Qt||2F + Tr(ϕ(QT

s Qs − I))
(16)

Taking the partial derivative of L w.r.t. Qs, we can obtain the
following equation:

∂L
∂Qs

=− VsP +QsP
TVsP + αQs − αQt (17)

Setting ∂L
∂Qs

= 0, we can get the solution of Qs as follows:

Qs = (αQt + VsP )(PTVsP + αI)−1 (18)

4) Fix P , S and Qs, and update Qt: Similar to Eq. (18),
we can obtain the following solution for Qt:

Qt = (αQs + VtP )(PTVtP + αI)−1 (19)

We repeat the above four steps until the objective function
converges or the maximum iteration number reaches.

3. Experiments
3.1. Experimental settings

In this section, we evaluate the performance of the proposed
algorithm for cross-domain SER on three public benchmark
datasets, including Berlin [21], CVE [22] and IEMOCAP [23].
Two of the above datasets are randomly selected as the source
and target domains, respectively. Thus we can get six types of
cross-domain SER tasks (source → target): C→ B, I→B, B→C,
I→C, B→I, and C→I. We choose four common emotion cate-
gories for experiments, including anger (AN), happiness (HA),
neutral (NE), and sadness (SA). Additionally, each domain is
divided into 10 parts, of which 7/10 are used for training and
3/10 are used for test.

We compare the proposed UTCL with several state-of-
the-art subspace learning and transfer subspace learning meth-
ods, including principal component analysis (PCA), transfer
component analysis (TCA) [10], joint distribution adaptation
(JDA) [5], transfer joint matching (TJM) [24], balanced distri-
bution adaptation (BDA) [6], transfer linear discriminant analy-
sis (TLDA) [3], discriminative transfer feature and label consis-
tency (DTLC) [7], and joint distinct subspace learning and un-
supervised transfer classification (JDSC) [13]. For a fair com-
parison, we choose the linear SVM as the baseline classifier for
all the compared algorithms. Besides, we select the recognition
accuracy of the test set for evaluation.

3.2. Results and discussions

Table 1 displays the recognition results of different algorithms
on six cross-domain SER tasks. As shown in the table, we have
the following observations:

Firstly, compared with all the baseline methods, the pro-
posed UTCL method achieves better recognition performance
under all settings. the average classification accuracy of our
method is 57.16%, which gains 4.25% improvement in com-
parison with the second-best method JDSC. This demonstrates
that the proposed method can effectively solve the cross-domain
SER problem.

Secondly, the recognition results of our method and other
transfer learning methods significantly outperform the classical
PCA method. This might be attributed to that, PCA does not
consider the problem of feature distribution mismatch between
source and target samples, whereas the transfer learning meth-
ods consider this problem, which can efficiently mitigate the
distribution divergence across the domains.

4540



Table 1: Recognition results (%) of different algorithms on different tasks.

Settings Compared methods UTCLPCA TCA JDA TJM BDA TLDA DTLC JDSC
C→B 56.54 65.98 60.82 67.01 57.27 59.79 62.71 68.04 68.20
I→B 30.31 50.52 53.61 53.61 59.21 56.41 52.73 52.58 66.13
B→C 45.74 53.21 51.92 48.08 50.41 55.56 50.76 57.69 60.38
I→C 35.16 40.38 51.28 41.03 49.32 54.49 44.10 46.17 52.05
B→I 44.21 43.73 37.42 43.21 48.52 32.44 40.22 47.29 47.41
C→I 44.62 46.77 46.77 47.29 44.10 50.19 43.23 45.66 48.82

Average 42.76 50.10 50.30 50.04 51.48 51.81 48.96 52.91 57.16

Thirdly, it is worth noticing that among the six groups of
cross-domain tasks, the recognition performance of B→I and
C→I is significantly lower than that of other tasks, The reason
might be that the number of samples in IEMOCAP is larger than
that of the other two datasets. When the IEMOCAP dataset is
used as the target domain, the recognition results are relatively
lower due to the small number of training samples. This indi-
cates that the adequacy of training samples is vital to the perfor-
mance of cross-domain SER.

3.3. Ablation analysis

In this subsection, we carry out the ablation study of UTCL
by setting the related main parameters to zero. We have the
following three cases:
• Setting α = 0, the reconstruction matrix alignment term is

ignored.
• Setting β = 0, the sparsity of W is ignored.
• Setting γ = 0, the adaptive structured graph term is ignored.
From Fig. 2, we can find that these three special cases perform
significantly worse than UCTL. This result demonstrates that all
three terms play a positive role in our method.
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Figure 2: Ablation study of our method under six different tasks.

3.4. Convergence analysis

In this subsection, we give the convergence analysis of UTCL
under six different tasks. The results are shown in Fig. 3.
As can be shown in the figure, we can find that, UTCL can
achieve stable satisfactory performance within only a few it-
erations (T < 20), and the values of our objective function
decrease monotonously. These results prove the convergence
property of our method.

3.5. t-SNE visualization

To better demonstrate the performance of our method, we give
the data visualization results of t-SNE [25] in Fig. 4. Here we
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Figure 3: Convergence analysis of the proposed UTCL.

take B→C as an example. As shown in Fig. 4 (a), we can find
that there exists a distribution discrepancy between source and
target domains in the original data space. Fig. 4 (b) shows the
results using the proposed UTCL method. From the figure, we
can observe that the source and target data follow similar fea-
ture distributions after projection, and the cross-domain samples
from the same category are close to each other.
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Figure 4: t-SNE visualization of data on the C→B task. The +
and ∗ represent the data of source and target domains, respec-
tively. Four colors represent four different emotion categories
(red: AN, blue: HA, green: NE, and yellow: SA).

4. Conclusions
In this paper, we propose a novel method called unsupervised
transfer components learning (UTCL) for cross-domain SER.
Different from current transfer learning algorithms, UTCL can
efficiently learn transfer components by preserving the com-
mon and domain-specific information. Moreover, we design an
adaptive structured graph as the distance metric. Thus, the dis-
crepancy between the two domains can be efficiently reduced.
We conduct extensive experiments on three benchmark datasets,
and the results demonstrate the superiority of UTCL against
several state-of-the-art methods.

4541



5. References
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