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Abstract
The goal of accent conversion (AC) is to convert the accent of
speech into the target accent while preserving the content and
speaker identity. AC enables a variety of applications, such as
language learning, speech content creation, and data augmen-
tation. Previous methods rely on reference utterances in the
inference phase or are unable to preserve speaker identity. To ad-
dress these issues, we propose a zero-shot reference-free accent
conversion method, which is able to convert unseen speakers’
utterances into a target accent. Pseudo Siamese Disentanglement
Network (PSDN) is proposed to disentangle the accent from the
content representation. Experimental results show that our model
generates speech samples 1 with much higher accentedness than
the input and comparable naturalness, on two-way conversion
including foreign-to-native and native-to-foreign.
Index Terms: Accent Conversion, zero-shot, feature disentan-
glement

1. Introduction
Accent conversion (AC) basically aims to change the accent of
speech while retaining the information of content and speaker
identity. The applications can be divided into foreign-to-native
and native-to-foreign with regard to the selection of the target
accent. For foreign-to-native conversion, language learners can
use this technique to convert their voice into a native accent while
preserving their identity, then they can imitate the converted
speech for better learning. For native-to-foreign conversion,
this technique can greatly augment the training set for many
speech tasks, such as automatic speech recognition (ASR), by
generating various foreign-accent speech. Additionally, in the
scenario of video content creation, an accent can be viewed as a
special speech style, and thus creators can use AC to make their
narration more diverse.

Previous approaches to AC have two major limitations. First,
those reference-based methods need target-accent utterances as
references during inference [1, 2, 3, 4]. This essentially limits
the practical use because it is hard to match arbitrary text from
inputs. Second, most methods are unable to preserve the speaker
identity for unseen speakers [1, 2, 5, 6, 7]. To address these
issues, in the paper, we propose a zero-shot reference-free AC
system from the perspective of feature disentanglement. For the
task of AC, parallel data, which are utterances uttered by the
same speakers with the same content but different accents, barely
exist. In contrast, non-parallel data contain varied but unpaired
information and are widely available. To take full advantage
of non-parallel data, it is beneficial to decompose speech into

1Some audio samples: https://faceless-rex.github.
io/publications/zero-shot-AC-PSDN/

different independent features. In our method, speaker identity,
content, and accent are modeled separately.

To represent the content, Bottleneck features (BNFs) are
first extracted from a pre-trained automatic speech recognition
(ASR) model and then transformed by a content encoder since
ASR BNF has been widely used to represent the content in pre-
vious works[3, 5]. But apart from linguistic information, we find
BNFs still contain accent-related information. To separate the
content and accent, we propose Pseudo Siamese Disentangle-
ment Network (PSDN) to reduce the source accent in the content
representation and then generate the target accent based on the
content. For speaker timbre modeling, the speaker timbre feature
is extracted by a timbre encoder from the Mel-spectrogram. To
improve the generalization ability on unseen speakers, a speaker
augmentation method is proposed and applied only at the timbre
extraction stage.

The contributions of this paper include: (1) The proposed
method is a zero-shot accent conversion method, which is able
to convert unseen speakers’ utterances into a target accent while
greatly preserving the voice identity and content. (2) The
proposed method yields high accentedness and naturalness in
two-way conversion, including foreign-to-native and native-to-
foreign. (3) Our model is trained on non-parallel data and allows
for a limited number of target-accent speakers, such as 1.

2. Related work
Previous approaches to AC can be divided into two main cate-
gories, reference-based and reference-free. Referenced-based
AC approaches, which build a VC model to transform reference
utterances with the target accent from a source speaker to the
target speakers, have been prevalent previously. Phonetic poste-
riogram (PPG) is often utilized to achieve the goal of VC [1, 2].
But the basic VC model is only applicable to seen target speakers.
To generalize to unseen speakers, the speaker encoder has been
introduced [3] to extract a speaker embedding for unseen speak-
ers at inference time. To ease the requirement of reference at
inference time, Li et al. [4] proposed a target-accent TTS system
to generate reference speech at synthesis time.

To improve practical use, many reference-free methods have
been proposed. Waris Quamer et al. [7] splits the AC task into
two sub-tasks, pronunciation correction, and voice conversion.
A translator is trained to map the BNF extracted from source-
accent speech to that from target-accent speech. The converted
BNF is further transformed into Mel-spectrogram by a many-
to-many VC model. From another perspective, some previous
works [5, 6] build a VC model to generate synthetic parallel
data and then train a sequence-to-sequence model to learn the
mapping relationships of the parallel data. But these reference-
free approaches are not applicable to unseen speakers. Liu et al
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Figure 1: The workflow of the proposed method. The dotted lines are only enabled at the training stage.

[8] have proposed a zero-shot system sharing the most similar
advantage with our method. They propose to build a multi-
speaker TTS model with a native English accent. An ASR model
is trained to predict the output feature map of the encoder of the
TTS model. Different from their method, our method achieves
the goal of AC from the perspective of feature disentanglement.

Siamese neural network (SNN) is an artificial neural net-
work where two different inputs shared the same weight and the
outputs are computed for similarity metric learning. It has been
used for speech recognition [9] to leverage unlabeled acoustic
data, and voice casting [10] to measure the proximity between
the original and dubbed voice. Pseudo Siamese network (PSN)
is a special case of SNN, where the inputs do not share weights
and the structure of either stream is flexible. COMPOSE [11]
uses a cross-modal PSN for feature matching. Xia et al. [12]
has proposed a PSN to generate labeled data for few-shot intents.
To the best of our knowledge, the idea of SNN/PSN has not
been used for feature disentanglement so far. Gradient Reversal
Layer (GRL) is an adversarial training trick, which is originally
proposed for unsupervised domain adaptation [13] and widely
adopted for feature disentanglement in various areas, such as
music translation [14], image-to-image translation [15] and text
classification [16].

3. Proposed method
In the paper, we propose a zero-shot reference-free AC system.
The workflow of the method is illustrated in Figure 1. In this
work, speaker timbre, content, and accent are modeled separately.
In content modeling, a content encoder is adopted to transform
BNF into accent-free content representation, with the help of an
adversarial accent classifier and following accent modeling. In
accent modeling, PSDN is proposed to disentangle the source
accent from the content representation and generate the target
accent base on the content. PSDN is inspired by the idea of PSN
and leverages the difference between two streams to achieve
feature disentanglement. In speaker timbre modeling, to better
generalize to unseen speakers, a speaker augmentation method
is proposed to extract an augmented speaker representation.

3.1. Content modeling

For input utterances, BNF is first extracted from a pre-trained
ASR model, which is trained by Connectionist Temporal Classi-
fication (CTC) loss [17]. To be specific, we adopt the output of

the final hidden layer in the encoder of the ASR model as BNF.
The extracted BNF is then fed into the content encoder, which
is composed of multiple Conformer blocks [18], to obtain the
content representation.

We expect the content representation to contain as little
accent information as possible, otherwise, the source accent
of input speech would affect the conversion performance. But
we find that BNF contains fine-grained articulation information,
including the accent. To remove the accent information in the
content representation, an adversarial accent classifier is first
applied to the content representation to discriminate between the
target accent and others, and Gradient Reversal Layer (GRL) [13]
is used to connect the content encoder and the accent classifier.
To further achieve this goal, PSDN is proposed and presented in
Section 3.3. The loss of content modeling is defined as:

Fcontent = Econtent(BNF ) (1)

Ŷaccent = Caccent(GRL(Fcontent)) (2)

Lcontent = CE(Yaccent, Ŷaccent) (3)

where Fcontent denotes the output of the content encoder,
Econtent denotes the content encoder, Caccent denotes the ac-
cent classifier, Yaccent and Ŷaccent denote the accent label and
predicted accent, respectively. CE denotes Cross-entropy loss.
Lcontent denotes the loss for content modeling.

3.2. Speaker timbre modeling

To represent speaker timbre, Mel-spectrogram is fed into a tim-
bre encoder to generate a global vector. We assume that accent is
a time-varying feature, and thus the global timbre representation
is irrelevant to accent. During training, we propose a speaker
timbre augmentation technique applied to the input of the timbre
encoder, yielding an augmented Mel-spectrogram. To be spe-
cific, we adopt a pre-trained any-to-many VC model, which is
able to change the speaker timbre while retaining the content
and accent of the input. At the training stage, the speaker timbre
of each utterance is randomly converted to some other speakers
or remains unchanged. The main purpose is to increase the diver-
sity of speaker timbre so as to improve the generalization ability
of unseen speakers. This technique makes it possible to train our
model on a very small quantity of target-accent speakers. Addi-
tionally, augmented Mel is used to compute loss (rightmost side
in Figure 1), ensuring speaker timbre is independently modeled
and disentangled from the accent and content.
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3.3. Accent modeling

Pseudo Siamese Disentanglement Network (PSDN) is proposed
for accent modeling and plays two roles: first, reducing the
source accent in content representation; second, generating the
target accent given content and speaker timbre representations.
PSDN consists of two streams, the target, and the auxiliary
stream. The two streams have different architectures and receive
different data during training. During inference, only the target
stream is used. The details are shown on the right side of Figure 1.
The differences between the two streams can be summarized
into two aspects:

(1) Received information. The auxiliary stream receives
more information as input than the target stream. To be spe-
cific, the auxiliary stream contains an extra encoder to receive
Mel-spectrogram without augmentation, which is rich in accent-
related information.

(2) The difficulty of the training task. The data flowing
through the two streams are different. Here we use an example
for a better explanation. Assuming the British accent is the target
accent, and our training data consist of British-accent and other-
accent data. In training, British-accent data flow through both the
target and the auxiliary stream, while other-accent data only flow
through the auxiliary stream. The task of the auxiliary stream
is to reconstruct the accent of all speakers, which is obviously
more difficult than that of the target stream. Therefore the model
may prioritize fulfilling the need of the auxiliary stream, which
is to obtain accent-related information as easily as possible.

We take advantage of the differences between the two
streams to realize the disentanglement of the accent. For the
auxiliary stream, there are two potential sources of accent in-
formation: the content representation and the auxiliary encoder.
Since an adversarial accent classifier has been applied to the con-
tent representation, it is intuitively easier for the auxiliary stream
to learn the accent information from the auxiliary encoder rather
than the content representation. Therefore, the accent informa-
tion in the content representation is forced to decrease. Due to
the lack of accent information in the content representation, thus
the target stream will learn to model the target accent given the
content. Additionally, there is an extra merit of PSDN. Since
we often have a large amount of other-accent data, the auxiliary
stream amounts to an exit for these data so that the speaker tim-
bre and content modules have the opportunity to learn from more
data.

We compute the L1 loss between the output of each stream
with the augmented Mel-spectrogram. The loss of accent model-
ing is defined as :

Ŷtarget = Starget(Fcontent, Ftimbre) (4)

Ŷaux = Saux(Fcontent, Ftimbre, Faux) (5)

Laccent = ∥Yaug mel − Ŷtarget∥1︸ ︷︷ ︸
For target-accent data

+ ∥Yaug mel − Ŷaux∥1︸ ︷︷ ︸
For all data

(6)

where Ŷtarget and Ŷaux denote the outputs from the target and
auxiliary stream, respectively. Starget and Saux denote the
target and the auxiliary stream, respectively. Ftimbre and Faux

denote the outputs from the timbre encoder and auxiliary encoder,
respectively. Yaug mel denotes the augmented Mel-spectrogram.
Laccent is the loss for accent modeling. To summarize, the loss
used to train the proposed system is defined as:

L = Lcontent + Laccent (7)

Table 1: Training/validation and test data. The training/valida-
tion set consists of the target-accent and other-accent data.

Foreign-to-native (British)
Target-accent 1 speaker, 10H (Inhouse)
Other-accent 1122 speakers, 251H (LibriTTS [19])

Test 4 foreign-accent speakers (ARCTIC-L2)
Native-to-foreign (Indian)

Target-accent 260 speakers, 39H (Inhouse)
Other-accent 1122 speakers, 251H (LibriTTS)

Test 4 American native speakers (Inhouse)

4. Experimental setup
4.1. Data

We conduct experiments on both foreign-to-native and native-
to-foreign conversion, using British and Indian accents as the
target accent, respectively. The datasets for the two experiments
are summarized in Table 1. Since LibriTTS has a great diver-
sity of speakers, we use train-other-500 of LibriTTS as other-
accent data for both experiments. For foreign-to-native con-
version (British), the target-accent data contains only 1 British-
accent speaker. Although LibriTTS also contains some unlabeled
British speakers, there are differences between individuals and
thus we can treat them as other-accent. The test set is non-native
English speech from L2-ARCTIC [20]. For native-to-foreign
conversion (Indian), the target-accent data contains 260 Indian-
accent speakers. Different from the above British case, we treat
accent as a group attribute here. The test set is some native
American speech from inhouse dataset. For each experiment,
we randomly select 5% of utterances for each speaker as the
validation set.

4.2. Model architecture details

The content encoder is composed of a 3-layer Conformer [18]
with a hidden size of 512. The accent classifier is composed of
a bidirectional LSTM [21] with a hidden size of 256 for each
direction, and 4 convolutional residual blocks with a channel size
of 256. Each convolutional residual block contains 2 convolution
layers followed by LeakyReLU activation. The down-sampling
rates of the residual blocks are 4, 2, 2, and 2, respectively. The
pre-trained ASR model for BNF extraction follows the architec-
ture of [18] and is trained on LibriSpeech [22] with CTC loss
computed among 5013 subwords [23] in English.

The architecture of the timbre encoder follows the architec-
ture of [24], which is composed of a reference encoder and a
style token layer. The reference encoder contains a 2-D convolu-
tion stack and a GRU [25] layer. The convolution stack contains
4 Conv-BatchNorm [26]-ReLU blocks, where the kernel size
and stride and (3, 3) and (2, 2) for each block, and the channel
size is [16, 32, 64, 128]. The hidden size of the GRU layer is
256. For the style token layer, 20 tokens with 256 channels are
used. The pre-trained any-to-many VC model used for speaker
augmentation follows the architecture of [27]. The model is
trained on LibriTTS and VCTK [28], among which speakers
with less than 100 sentences are excluded.

Both the target decoder and auxiliary decoder are a 3-layer
Conformer with a hidden size of 512. The auxiliary encoder
is composed of 4 convolutional residual blocks with hidden
sizes of 128, 128, 128, and 16. Each convolutional residual
block contains 2 convolution layers followed by the LeakyReLU
activation. During conversion, a pre-trained universal TFGAN
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Table 2: Mean opinion score (MOS) for naturalness and accent-
edness with a 95% confidence interval on two target accents.

Systems Naturalness↑ Accentedness↑
British Indian British Indian

Input 3.28±0.14 4.32±0.09 2.05±0.10 1.12±0.07
Baseline 3.41±0.13 3.97±0.12 2.57±0.13 1.31±0.10
Proposed 3.45±0.10 3.95±0.08 3.35±0.12 3.82±0.12

Table 3: Mean opinion score (MOS) for speaker timbre similarity
with a 95% confidence interval on two target accents.

Systems Speaker similarity↑
British Indian

Proposed 3.13±0.07 3.81±0.15
w/o speaker augmentation 1.80±0.11 1.90±0.10

vocoder [29] is used to transform the predicted Mel-spectrogram
to the waveform.

The proposed model is trained for 220k steps with the Adam
optimizer [30] using a batch size of 32 and a constant learning
rate of 0.001. The training process takes 2 days on 4 Tesla
V100 GPUs. Each mini-batch contains an equal number of
target-accent and non-target-accent speech data. Logarithmic
80-dimensional Mel-spectrograms with a hop size of 240ms are
extracted from 24000Hz waveforms. The λ of GRL is 5e−3.

4.3. Baseline and ablation study

In the baseline method, we remove the proposed PSDN and keep
the accent classifier with GRL for feature disentanglement, since
GRL proved to be effective for feature disentanglement in many
areas [14, 15, 16]. To be specific, we replace PSDN with two
separate decoders of identical architecture, one for the target
accent and the other for other accents. The other parts remain
the same as the proposed method.

We also conduct an ablation study on the proposed speaker
augmentation method to verify its effectiveness. We directly
remove it during training so that the augmented Mel-spectrogram
is replaced by the original one.

5. Results
To evaluate the proposed system, three perceptual listening tests
are conducted, including audio naturalness, accentedness, and
speaker similarity. A standard 5-point scale mean opinion score
(MOS) is used for all the tests. For either native-to-foreign
(Indian) or foreign-to-native (British) experiments, there is a
total of 20 test utterances from 4 speakers consisting of 2 females
and 2 males. All speakers in the test set of each experiment are
unseen during training. 10 participants proficient in English are
recruited for the listening tests.

5.1. Naturalness

All participants are asked to rate the acoustic quality of each
utterance from the baseline and proposed method. Following [7],
the input utterances are also evaluated for comparison. The
results are shown in Table 2. In general, both the baseline and
proposed systems obtain comparable MOS to that of the input,
demonstrating that our system does well in the preservation of
audio naturalness. It is reasonable that the baseline shares a
similar MOS with the proposed system because either system
uses the target stream for inference, which is consistently trained

on the target-accent data.
In particular, the proposed method yields even higher MOS

than that of the input in the foreign-to-native (British) experi-
ment. The main reason is that the non-native test samples for
the British accent are from L2-ARCTIC and have obvious back-
ground noise. The proposed method lets other-accent data of
uneven quality only flow through the auxiliary stream, guaran-
teeing the target stream is trained with relatively high-quality
speech. This illustrates that the proposed system can improve
audio quality to a certain extent when the input is noisy.

5.2. Accentedness

For each utterance from the baseline and proposed method, all
participants are asked to rate the degree of proximity to the
target accent. During the evaluation process, some target-accent
utterances from the training set are provided to participants for
comparison and reference. The results are shown in Table 2.
It can be seen that the proposed system outperforms the input
and the baseline by a large margin on both foreign-to-native
and native-to-foreign conversion. This demonstrates that the
proposed PSDN can effectively disentangle the source accent
from the content, while the baseline system only with GRL, fails
to disentangle the accent from the content representation and
tends to retain the source accent of the input. We find that the
accentedness variance among all systems in foreign-to-native
(British) is smaller than that of native-to-foreign (Indian). The
reason is probably that the British accent is more difficult to
distinguish than the Indian accent.

5.3. Speaker similarity

The purpose of the listening test is to verify the effectiveness of
the proposed speaker augmentation method. In this test, each
sample from the proposed and the ablation system is paired with
the corresponding input speech, then participants are asked to
listen to a pair of audio samples and rate the speaker timbre
similarity. A higher score represents higher identity similarity.
Results are shown in Table 3. It can be seen that the proposed
system yields a much higher similarity score than the system
without speaker timbre augmentation on both foreign-to-native
and native-to-foreign conversion. In particular, for the British
case, the training data only contain one target-accent speaker.
The proposed speaker augmentation method can increase the
number of target-accent speakers and alleviate the problem of
a lack of target-accent speakers. We can conclude that the pro-
posed speaker augmentation technique can improve the gen-
eralization ability on unseen speakers, even with very limited
target-accent speakers in training data.

6. Conclusion
In this work, we propose a zero-shot reference-free accent con-
version method requiring only non-parallel data at the training
stage, which is applicable to two-way conversion. PSDN is pro-
posed to solve the AC problem from the perspective of feature
disentanglement. Experimental results show that the proposed
method is able to convert unseen speakers’ utterances into the
target accent with high naturalness and accentedness, on both
foreign-to-native and native-to-foreign conversion. The speaker
similarity is also largely improved by the proposed speaker aug-
mentation method. In the future, the ability to retain speaker
identity will be improved for unseen speakers through further
research. Additionally, the proposed PSDN is widely applicable
to various tasks on feature disentanglement.
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