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Abstract

In this study, we explore self-distillation (SD) techniques to im-
prove the performance of the transformer-encoder-based self-
attentive (SA) end-to-end neural speaker diarization (EEND).
We first apply the SD approaches, introduced in the automatic
speech recognition field, to the SA-EEND model to confirm
their potential for speaker diarization. Then, we propose two
novel SD methods for the SA-EEND, which distill the predic-
tion output of the model or the SA heads of the upper blocks
into the SA heads of the lower blocks. Consequently, we expect
the high-level speaker-discriminative knowledge learned by the
upper blocks to be shared across the lower blocks, thereby en-
abling the SA heads of the lower blocks to effectively capture
the discriminative patterns of overlapped speech of multiple
speakers. Experimental results on the simulated and CALL-
HOME datasets show that the SD generally improves the base-
line performance, and the proposed methods outperform the
conventional SD approaches.

Index Terms: speaker diarization, end-to-end neural diariza-
tion, self-attention mechanism, fine-tuning, self-distillation

1. Introduction

Speaker diarization task determines “who spoke when” from an
audio mixture of multiple overlapping utterances acquired in a
conversational environment. Conventionally, speaker diariza-
tion systems were implemented using several modules with dif-
ferent functions, for example, a voice activity detector, speaker
embedding extractor, and clustering, to assign the speaker la-
bels to the audio segments. However, such modular approaches
are limited because they can only assign one speaker per seg-
ment, which is not suitable for handling overlapped speech, and
cannot be directly optimized to reduce diarization errors. To
overcome these limitations, an end-to-end neural speaker di-
arization (EEND) approaches were proposed [1, 2], which di-
rectly predicts the speaker activity labels from the audio mix-
ture. Specifically, Fujita et al. [2] trained the transformer-based
self-attentive (SA) EEND model using the binary cross-entropy
(BCE) loss based on permutation invariant training (PIT) and
achieved significant performance improvements.

Recently, researchers have been interested in effectively
training the SA-EEND by assigning auxiliary losses [3, 4].
Yu et al. [3] demonstrated that the lower blocks of the SA-
EEND model contribute less to diarization performance com-
pared to higher blocks as the depth of the model increases.
Based on these observations, they proposed residual auxiliary
EEND (RX-EEND), which adds residual connections between
blocks and computes the diarization loss for every block so that
all blocks can be involved to the calculation of the loss func-
tion. Jeoung et al. [4] showed that the attention weight matrices

of multi-head self-attention (MHSA), learn redundant patterns.
To alleviate this issue, they proposed new auxiliary losses that
leverage overlapped and speaker-wise speech activity patterns
to guide the SA heads.

In this study, we propose a novel self-distillation (SD)
method to effectively train the SA heads of the SA-EEND
model based on prior research, which showed that the contri-
bution of each layer to the diarization performance is differ-
ent and that auxiliary losses for SA heads are effective. The
main concept of SD is to divide a single network into the up-
per and lower layers based on their depth and then distill the
higher-level knowledge learned from the upper layers into the
lower layers [5]; SD was shown to be effective for training deep
learning models in various fields [5—10]. First, we explore the
applicability of SD techniques for speaker diarization tasks by
adopting the algorithm proposed in the field of automatic speech
recognition [6]. Subsequently, we propose new SD techniques,
which distill high-level speaker-discriminative knowledge to the
attention weight matrices of lower blocks. Our proposed tech-
nique can be implemented twofold: (1) output-to-head SD uti-
lizing the speaker posteriors predicted from the output layer and
(2) heads-to-head SD using the attention weight matrices ex-
tracted from the upper blocks. We expect that our methods help
the attention weight matrices of lower blocks to contribute more
to the prediction of speaker activity labels. The experiment on
both simulation and real datasets for two speakers verified the
effectiveness of our approaches.

2. Related work

2.1. Self-attentive end-to-end neural diarization

We briefly summarize the SA-EEND [2] as the baseline
model. To predict the sequence of speaker activity labels, the
SA-EEND model converts the 7-length input feature X =
[X1,--- ,xr] into an embedding e by passing it through a lin-
ear layer.

e = Linear(x¢) , el e R”, 1
where ¢ is the time frame index. Then, the blocks of the stacked
transformer encoder are introduced.

EP = EncoderBlock,(E?~"),1 < p < P, @)

where EP = [e},-- -, e}] denotes the embedding sequence of
the p-th block. The encoder block comprises an MHSA and
feed-forward network, each of which is preceded by a layer
normalization (LN) [11] and uses a residual connection. The
feed-forward network consists of two linear layers and a ReLU
activation [12]. The SA head in MHSA calculates using the
scaled dot-product attention [13] as follows:

Attention(Q, K, V) = softmax (QKT /\/&) V=HV, 3)
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where H € RT*7 is the attention weight matrix that considers
global feature relations, which is defined as the product of query
Q and key K divided by the squared root of d. V & RT*¢
denote the value and d is the dimension of hidden space, re-
spectively. After passing through all the P encoder blocks, the
prediction for S speakers, ¥+ = [§t,1,- - ,Tt,s], at the time
frame ¢ is obtained as follows:

@
(&)

U = sigmoid (o),

o = Linear (LN(ef)) .

In the training step, the SA-EEND is optimized with a loss
function £4, which is calculated between prediction and target

label.

S
Z BCE(yﬁS@a yty‘s)’

s=1

T

1
Li=— min 6
¢ TS ¢1, ,6s€®g ; ©

where ® s represents all possible permutations of the speakers,
andy, = [yfi., -+, yg%,) € {0,1}" is the speaker label se-
quence according to the permutation ¢, respectively.

2.2. Self-distillation

Knowledge distillation (KD) technique is a commonly used
method for compressing models using a teacher network to dis-
till knowledge into a student network [14]. Recently, several
problems have been noted with KD: the quality and content of
the knowledge that a student network learns depending on how
the teacher network is designed, and student networks do not
fully utilize knowledge [5]. The SD framework has been in-
troduced in various fields [5-7] to overcome the limitations of
KD, involving distilling knowledge within a single network, re-
sulting in reduced training time and improved distillation accu-
racy. Furthermore, Xu et al. [6] proposed neighboring feature
SD (NFSD) and attention-based feature SD (AFSD) methods
for the speech recognition task, which distill the output infor-
mation between the transformer encoder—decoder blocks.

This subsection introduces the application of the NFSD and
AFSD for SA-EEND. The NFSD distills the output of the upper
encoder block to the lower block within each group, considering
two adjacent encoder blocks as a group. The loss function of
NFSD is calculated using mean squared error (MSE) as follows:

P/2
LNFsD = ZMSE(Ezp—1, Esyp),

p=1

@)

The AFSD calculates dot-attention to integrate information ob-
tained from the outputs of all upper blocks and distill it into
lower blocks. The definition of the knowledge that the output
feature of the p-th block needs to learn is denoted as G.

P
Gp= >

l=p+1

exp (DotAttention(Ey, E;))
Zﬁ:p+1 exp (DotAttention(FE,, Eyr))

o B,

(®
where © indicates the Hadamard product. G, represents the
summation along the weighted outputs of the upper blocks.
Then, AFSD loss is also calculated using the MSE as follows:

P-1
Larsp = Y _ MSE(E,,G).

p=1

(C)]
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Figure 1: SA-EEND model with two proposed SD methods. (a)
Output-to-head distillation, (b) Heads-to-head distillation

3. Proposed self-distillation method

We propose two methods to self-distill the knowledge into SA
heads. We focus on the observation of previous studies that SA
heads of the encoder block learn patterns relevant to speech and
speaker information [2,4]. Concurrently, we assume that the
prediction outputs and SA heads of the higher blocks, which
are closer to the output layer of the model, contain more infor-
mation relevant to diarization prediction. Thus, we expect that
the two proposed methods help each of the SA head in lower
blocks learn patterns explicitly and achieve diarization perfor-
mance improvement.

3.1. Output-to-head distillation

As the source information to be distilled into the SA heads
of the lower blocks, we extract the output feature vector,
O; = [o1,s, - ,0r,s], containing the highest-level speaker-
discriminative information. The target matrices to be distilled
are generated as My = OSTOS(I < s < S), which are used
for computing the similarity and the training loss. To determine
the SA head to which the knowledge is distilled, we measure
the MSE between H,", the attention weight matrix of the p-
th encoder block, and M. We select the SA head with the
lowest similarity in the attention weight matrices to M. Sub-
sequently, we constrain the SA head to be similar to M using
the loss function described below:
s
Lo2n = max MSE(H,", M),
meM

s=1

(10)

where M is the number of attention heads of p-th block. We de-
note this SD method as Output-to-Head distillation. The overall
process of the Output-to-Head distillation is in Figure 1(a).

3.2. Heads-to-head distillation

The high-level information from upper blocks is not fully used
in the Output-to-Head distillation. Inspired by AFSD, we uti-
lize the SA heads in upper blocks to distill the information into
the SA heads of the lower block. We search for the suitable tar-



get H ,T', m/-th attention weight matrix of p-th encoder block
to be distilled into H};", where p is smaller than k. We choose

JEI,Z",, which has the maximum value of MSE, as H", simi-
lar to the Output-to-Head method. The information of the SA
heads in p-th block to be distilled into SA heads in k-th block is

defined as follows:
M

Ay, = ; Jmax MSE(H;", H}"). (11
Furthermore, we apply the attention mechanism to design
weights based on the amount of information upper SA heads
indicate to share. The attention value €, when the SA heads
of p-th encoder block are distilled from the SA heads of k-th
encoder block, is defined as follows:

ZII::;H»l Ak

Figure 1(b) shows an example in which the p is set to one. It
showed that the first head of the first block is distilled from the
upper blocks. The loss function with attention applied for each
layer is calculated as:

(12)

€k

P
Lrog = Z ek - Ak

k=p+1

We define this SD method as Heads-to-Head distillation.

(13)

4. Experiments

The details of our experiments are introduced in this sec-
tion. We configured our computing infrastructure with a single
NVIDIA GeForce RTX 3090 GPU and conducted experiments
using PyTorch version 1.10.1 on Ubuntu 18.04. To implement
various approaches on SA-EEND, we modified public code on
https://github.com/hitachi-speech/EEND.

4.1. Datasets

We prepared simulated and real datasets as same as described
in [2]. The speech mixture simulation algorithm [2] was used
to generate the simulated dataset, denoted as Sim2spk. The
Switchboard-2 (Phases I, II, and III), Switchboard Cellular
(Parts 1 and 2) [15], and NIST Speaker Recognition Assess-
ment (2004, 2005, 2006, and 2008) corpora [16-19] were used
to generate Sim2spk. All of these corpora were sampled at 8
kHz. Sim2spk used two different speakers for every utterance,
generated by randomly selecting 10 to 20 utterances from the
other. Each utterance was added with background noise sam-
ples from the MUSAN [20] and was convolved with a randomly
chosen simulated room impulse response with a probability of
0.5, as described in [2]. A set of two-speaker telephone conver-
sation utterances from the CALLHOME (CH) [21] dataset was
used for the real evaluation dataset. Following [2], two speaker
recordings from the CH dataset were split into adaptation and
test set. The details of these datasets are shown in Table 1 in-
cluding the number of mixtures and overlap ratios.

4.2. Experimental setup

The SA-EEND [2] with four transformer encoder blocks, each
using four heads, was used as the baseline model. The num-
ber of model parameters was 5.35M. The input features were
23-dimensional log-scaled mel-filterbank energies with a 25 ms
frame length and 10 ms frame shift. The training loss was cal-
culated as the sum of £4 and an auxiliary loss function multi-
plied by a scaling factor. For Lnrsp and Larsp, the same

3199

Table 1: Statistics of simulated and real datasets

Sim2spk CALLHOME

Datasets
Train Test Adapt  Test
# mixtures 100,000 500 /500 /500 155 148
overlap ratio (%) 344 344/273/19.6  14.0 13.1

Table 2: DERs (%) of SA-EEND by applying different auxiliary
losses on two training steps. Pretraining (X), Fine-tuning(v’)

Auxiliary g ep Sim2spk Real
loss 344% 273% 19.6% CH
2] X 630 614 617 1046

Laux [3] X 428 376 386 9.04
Ls,Lol4 X 429 411 415 867
Lnrsp [6] v 424 387 398  9.06
Larsp[6] v 404 389 388 9.0l

Lo X 513 514 537 926

v 407 375 372 858
Coan X 475 441 441 9.1l
v 397 366 347 853

hyperparameters described in [6] were employed, with the scal-
ing factors set to 1.0. Because the SA-EEND consisted of four
encoder blocks, £nrsp was applied to two groups: one com-
prising the first two encoder blocks and the other comprising the
last two. In addition, Lo2r and Lr2pm were applied using the
scaling factors of 1 and 0.2, respectively. Because the datasets
consisted of two speakers, Loz was applied to two SA heads
selected. The Adam optimizer [22] was applied with 100,000
warmup steps in all training stages, and the learning rate was set
to 0.00001 only during adaptation. The model was pretrained
and fine-tuned for 100 epochs each using the Sim2spk dataset,
and the CH two-speaker dataset was used for the adaptation
step for additional 100 epochs. After the pretraining was com-
pleted, the parameters of the models obtained from the last 10
epochs were averaged and subsequently used for fine-tuning or
adaptation. The evaluation was also conducted using the model
subjected to the aforementioned parameter averaging scheme.
The diarization error rate (DER) [23] was used as the evalua-
tion metric, with the collar tolerance of 0.25 s for both the start
and end of each segment. We applied an 11-frame median filter
and a threshold of 0.5 for the final speaker activity prediction.

5. Results and Analysis
5.1. Performance Comparison

Table 2 shows the performance of EEND models trained using
various auxiliary losses during the pretraining and fine-tuning
steps. We implemented the SA-EEND [2], RX-EEND [3], and
the SA-EEND model with the auxiliary losses described in [4];
for the last one, the best experimental setup explored in [4]
was adopted. Laux [3] is an auxiliary loss computed using the
same way as L4 [2] in all encoder blocks except the last en-
coder block. In addition, Ls and Lo [4] are auxiliary losses
computed using BCE and MSE between specific SA heads and
the matrices generated from two-speaker activity target, and be-
tween a specific SA head and overall speech activity pattern, re-
spectively. The experimental results for two proposed losses in
Table 2 were obtained when the SD was applied to the first en-



Table 3: DERs (%) on the Sim2spk depending on the location
of the encoder block where information is distilled.

Loss Distillated encoder Sim2spk
Ist 2nd 3rd 4th 344% 273% 19.6%
v 4.07 3.75 3.72

Loon v v 4.07 3.81 4.11
v v v 4.12 4.08 4.13
v v v v 4.14 4.10 4.11
v 3.97 3.66 3.47

Lo ¥ v 4.25 3.88 3.88
v v v 4.16 3.77 3.61

coder block. On both the simulated and real datasets, these pro-
posed SD methods achieved lower DER than NFSD and AFSD
that used the output of each encoder block for SD. Because the
auxiliary losses were only applied during the pretraining step
in [3, 4], we also conducted experiments by applying the pro-
posed SD methods only during the pretraining step. As shown
in Table 2, the application of the SD techniques during the fine-
tuning step significantly improved the baseline system on both
datasets, producing competitive performances with other mod-
els trained using the auxiliary losses proposd in [3,4]. However,
when the SD methods were only applied during the pretraining
step, the performance improvement was marginal. This could
be because it is generally accepted that the SD method is best
applied after the model has been fitted [6]. Thus, it can be ex-
plained that the proposed SD methods were also more effective
when applied after the model has been sufficiently trained in ad-
vance. For the remainder of the paper, we applied the proposed
SD methods during the fine-tuning stage.

5.2. Ablation study on selection of distilled encoder

Table 3 investigates the effect of the proposed SD losses on the
different locations of the encoder blocks subjected to SD. Be-
cause SD aims to share high-level information across the lower
layers of the model, the experiments were conducted by gradu-
ally expanding the number of encoder blocks, subjected to the
proposed SD methods, from the lowest to the highest layers. In-
terestingly, exclusively applying the proposed loss functions to
the first encoder block yielded superior performance than ap-
plying them to all lower blocks.

5.3. Effects of SD on SA-EEND

We visualized the four attention weight matrices of the encoder
blocks of the trained models in Figure 2 to investigate the im-
pact of the SD losses on SA heads. In the figure, the first three
rows represent the attention weight matrices calculated in the
first encoder block, and the fourth and fifth rows correspond to
the second encoder block. Comparing Figure 2(a) and (b), we
confirmed that the four attention heads show more explicit pat-
terns with a larger weight by applying Lo2m. In the case of
Lu2m represented in Figure 2(c), the pattern of identity term
with small weight was learned in head1 and head4, and the pat-
tern of head3 was more apparent than 2(b). Thus, considering
the DER in Table 2 and Figure 2, it can be inferred that our
SD losses helped the SA heads of the lower block to learn the
speech pattern effectively.

It was demonstrated in [4] that all the second encoder
blocks of SA-EEND [2], RX-EEND [3] and their proposed
model show only identity-like attention weight matrices on two
SA heads, for example, in head2 and head3. Interestingly, the
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Figure 2: Visualization of attention weight matrices of (a)—(c)
Ist encoder block and (d)—(e) 2nd encoder block: (a) SA-EEND,
(b) SA-EEND fine-tuned with Lo2m (c) SA-EEND fine-tuned
with Lr2m (d) SA-EEND, (e) SA-EEND fine-tuned with Lran
(CH recording ID: iaai)

two attention weight matrices (head2 and head3) of the second
block of SA-EEND, subjected to the proposed L2 loss, ex-
hibited non-identity-like patterns in addition to the identity-like
patterns in Figure 2(e). When applying Lm2p only to the first
block, the training of SA heads in the middle blocks may be
impacted, because it minimizes the MSE between the SA heads
in the first block and the SA heads in the upper blocks. There-
fore, the identity matrix has been relaxed, and performance im-
provement could have been achieved by effectively utilizing the
redundantly trained SA heads.

6. Conclusions

In this study, we proposed SD techniques for the SA-EEND
model to increase the contribution of SA heads of lower trans-
former encoder blocks by sharing high-level information. We
considered that the lower the similarity between the matrix to
distill and the attention weight matrix to be distilled, the lower
the contribution of the attention weight matrix to the diariza-
tion performance. To verify this, we assigned SD losses to SA
heads that showed low similarity. In particular, our experimen-
tal results showed that introducing various SD methods in the
fine-tuning step can significantly improve the performance of
the SA-EEND model. Furthermore, we visualized the SA heads
to which the SD was applied and demonstrated the effects. In
future work, we will apply the proposed SD methods for more
speakers and deeper networks, although the study in this paper
is limited to the four-layered encoder-based structures and two-
speaker conversations.
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