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Abstract
This paper presents FastFit, a novel neural vocoder architec-
ture that replaces the U-Net encoder with multiple short-time
Fourier transforms (STFTs) to achieve faster generation rates
without sacrificing sample quality. We replaced each encoder
block with an STFT, with parameters equal to the temporal res-
olution of each decoder block, leading to the skip connection.
FastFit reduces the number of parameters and the generation
time of the model by almost half while maintaining high fidelity.
Through objective and subjective evaluations, we demonstrated
that the proposed model achieves nearly twice the generation
speed of baseline iteration-based vocoders while maintaining
high sound quality. We further showed that FastFit produces
sound qualities similar to those of other baselines in text-to-
speech evaluation scenarios, including multi-speaker and zero-
shot text-to-speech.
Index Terms: Neural vocoder, text-to-speech, U-Net, short-
time Fourier transform

1. Introduction
Neural vocoders generate speech that conforms to the given
input conditions by modeling short- and long-term dependen-
cies. Owing to these features, these architectures have been
applied[1, 2], wholly or partially, to various applications[3,
4, 5] that output speech and audio as well as text-to-speech
applications[6, 7, 8, 9]. Moreover, the use of generative ad-
versarial networks (GANs)[10] for neural waveform generation
has further improved neural vocoders[2, 11, 12, 13, 14, 15].
However, according to recent text-to-speech studies, some
vocoders require additional training (i.e., fine-tuning) using
pairs of ground-truth waveforms and model-predicted features
to adapt to low-quality audio features generated by an acoustic
model[4, 12, 13, 14].

Recent research has shown that image generation models
utilizing denoising diffusion probabilistic models (DDPMs)[16]
outperform traditional GAN-based models[17]. Several studies
have successfully applied DDPM to neural vocoders, with some
reporting superior performance over conventional models[18,
19, 20, 21]. However, the trade-off between generation speed
and quality owing to the need for repeated denoising is consid-
ered a barrier to the commercialization of these models. Subse-
quent studies have attempted to overcome this by maintaining
robust performance with fewer iterations[20, 22, 23].

The symmetric architecture of U-Net[24] has made it an
attractive choice for iteration-style models. To use an existing
GAN-based vocoder as a decoder, some studies have added an
encoder connected with skip connections[18, 20]. However,
this doubles the size of the model and slows the generation
speed by approximately half.

To improve efficiency, we propose FastFit, a new architec-
ture that replaces the encoders in U-Net with multiple short-
time Fourier transforms (STFTs) to trade a small fidelity degra-
dation for a high generation speed gain. Our work is inspired by
the work of Kaneko et al. [14], who replaced some of the blocks
with an inverse STFT. We extended the GAN-based vocoder
proposed by Jang et al. [13] to U-Net and replaced each encoder
block with an STFT with parameters corresponding to the shape
of its skip connection. This modification of the model preserves
the advantages of skip connection in U-Net, while expecting
more efficient intermediate feature encoding of raw waveforms
because the computational cost of STFT is less than that of the
neural encoder.

We applied the iteration-style principle proposed by
Koizumi et al. [23] to the proposed architecture. To compare
the performance of FastFit, we used iteration-based vocoders,
which reported fast generation speeds as baselines and con-
ducted objective and subjective evaluations. The results showed
that FastFit achieved twice the generation speed with statisti-
cally similar speech quality despite having half the baseline pa-
rameters. Further, we conducted experiments by applying each
vocoder to multi-speaker and zero-shot text-to-speech with-
out fine-tuning, and FastFit was found to be one of the best-
performing models1.

2. Related work
The proposed model is influenced by several improvements
from previous studies on GAN-based vocoders. Parallel
WaveGAN[11] applied multi-resolution STFT (MR-STFT) loss
as an auxiliary loss to a vocoder to facilitate stable adversar-
ial training. HiFi-GAN[12] and UnivNet[13] include a multi-
period discriminator (MPD) and multi-resolution spectrogram
discriminator (MRSD), respectively, which are discriminators
that can observe real or generated waveforms with various pat-
terns and resolutions. iSTFTNet[14] replaced the back part of
the residual blocks of HiFi-GAN with an inverse short-time
Fourier transform (iSTFT), trading off a small reduction in qual-
ity for higher synthesis speeds. Recently, BigVGAN[15] suc-
ceeded in the adversarial training of large-scale generators with
more than 100M parameters, achieving overall state-of-the-art
fidelity, including out-of-distribution robustness.

Our work is based on the iteration-style vocoding principle
proposed by WaveFit[23]. According to the fixed-point itera-
tion theorem, if a mapping T has a fixed point x = T (x) and
is firmly quasi-nonexpansive (as described in Section 17.2.2 in
Yamada et al. [26]), then the mapping point T (y) of an arbi-
trary point y always has a smaller Euclidean distance from x

1Audio demo samples can be found at the following URL:
https://kallavinka8045.github.io/is2023/

INTERSPEECH 2023
20-24 August 2023, Dublin, Ireland

4364 10.21437/Interspeech.2023-2379



(a) n-th decoder block

(b) FastFit (U-Net) (c) FastFit (STFTs encoder)

Figure 1: FastFit architecture. (a) The n-th decoder block. For example, the 1-st decoder block computes ht[N + 1] from the output
ht[N ] of the last N -th encoder block and the skip-connection ht[N − 1], the output of the N − 1-th encoder. (b) FastFit based on
U-Net. c, w, and temb are used as inputs to each block, but we omitted them in this figure for brevity. PE denotes a positional encoding
operation[25]. (c) FastFit with multiple STFTs encoder, based on the proposed U-Net version. Each channel size of STFT is converted
to fit the channel of the decoder block through each convolution layer.

than y. T can be extended to the form of iterative denoising
yt−1 = T (yt). If an arbitrary initial point yT is iteratively re-
fined at each t from T to 1, then yt−1 always moves closer than
yt to the clean signal x, which is the fixed point of T . WaveFit
proposed a denoising mapping and loss function for a vocoder
that satisfies this property.

3. Description of the proposed model
The proposed model, FastFit, begins with an initial point yT .
At each iteration step, t = T, T − 1, ..., 1, denoising mapping
is applied to yt to obtain the denoised signal yt−1. A model
F parameterized by θ was trained to predict the noise compo-
nents of yt. Fθ was conditioned on the log-mel-spectrogram c,
latent noise z ∼ N (0, I), and current step t as Fθ(yt, c, z, t).
The objective of the vocoder is to make yt at each iteration,
including the final output y0, close to the target waveform, x.

3.1. Improving the architecture of the residual block

Our U-Net model has N encoder and decoder blocks with map-
ping and step embedding networks for the intermediate latent
w and step embedding temb, respectively, as shown in Fig-
ure 1(b). Each n-th decoder block computes ht[N + n] with
ht[N + n− 1], c, w, temb, and ht[N − n] as inputs, as shown
in Figure 1(a). temb is conditioned to be broadcast and added to
the following features after c and after each dilated convolution.

Each decoder block is based on the UnivNet[13] genera-
tor with three main changes. First, we added an adaptive layer
normalization (AdaLN) after each residual connection to in-
ject noise z into the vocoder for improving the performance
and training stability[27]. Second, we applied the snake activa-
tion function[15] to the model. This trainable activation func-
tion controls the output of each layer in the form of a periodic
frequency and contributes to out-of-distribution robustness[15].
Finally, the gated activation units were removed to improve the
generation speed. Although this layer contributes to a slight
improvement in quality according to UnivNet, it doubles the

number of channels in the previous layer. The encoder block is
like the decoder block, with a few differences: there is no skip
connection, and the upsampling layer is replaced with down-
sampling using strided convolution layer.

3.2. Replacing U-Net encoder with multiple STFTs

To approach a real-time iterative vocoder application, we pro-
pose an intuitive methodology: replacing the U-Net encoder
with multiple STFTs. As shown in Figure 1(c), we used a
frame shift interval equal to the temporal resolution of each de-
coder block, leading to the skip connection as a parameter for
each STFT. Inspired by iSTFTNet[14], the number of points in
the Fourier transform and Hann window length was set to four
times the respective frame shift interval. To match the chan-
nel size, a convolution layer was placed between each encoder
and decoder blocks. Because the computation speed of STFT
is high compared to that of the neural encoder block, our pro-
posed model could reduce the number of parameters by almost
half, approximately doubling the generation speed. We expect
limited degradation of speech quality using the methodology
because skip connections are still used, which is the basis for
the high performance of the U-Net architecture.

We conducted an ablation study to determine the optimal
representations of STFT. Consequently, we chose the Carte-
sian form (concatenation of real and imaginary channels) as the
STFT representation.

3.3. Denoising mapping and training losses

As mentioned in the previous section, our model is based on de-
noising mapping and the loss function proposed using WaveFit.
The denoised signal yt−1 is then computed as follows:

ỹt = yt −Fθ(yt, c, z, t) (1)

yt−1 = (Pc/(Pỹt + s))ỹt (2)

where s = 10−8 is a constant used to avoid numerical errors.

4365



The denoising mapping is defined by subtracting the noise com-
ponent predicted by Fθ from yt to obtain ỹt and adjusting the
power of ỹt to Pc. Pỹt and Pc can be obtained by computing
the power spectrograms of ỹt and c, respectively, and then tak-
ing the element-wise mean. Specifically, the power spectrogram
of c can be obtained by multiplying c with the pseudoinverse of
the mel-compression matrix and then squaring it. By scaling
the power of the signal to a constant power of c at each step, the
power of yt−1 can be kept constant until denoising is repeated
for all t and the final output y0 is obtained.

FastFit is adversarially trained with the least squares GAN
(LSGAN)[28] as the GAN loss and discriminators D, which are
a combination of MPD (as described in Appendix B.2 in Kim et
al. [9]) and MRSD[13]. The overall losses Ldisc and Lgen are
defined as follows.

Ldisc =
1

TK

T−1∑

t=0

K−1∑

k=0

[
Ex[(Dk(x)−1)2]+Eyt [Dk(yt)

2]
]

(3)

Lgen =
1

T

T−1∑

t=0

[
λauxLaux(yt,x)

+
1

K

K−1∑

k=0

[
Eyt [(Dk(yt)−1)2]+λfmLfm(Dk;yt,x)

]]
(4)

where K denotes the number of sub-discriminators. We used
MR-STFT[11] as the auxiliary loss Laux and set λaux to 2.5.
Additionally, we applied the scaled feature matching loss Lfm

proposed by Yang et al. [29]; λfm = λauxLaux/Lfm.
According to WaveFit, the initial point yT is sampled us-

ing the noise generation algorithm of SpecGrad[21], which is
defined as follows:

yT = G+MGϵ (5)

where ϵ ∼ N (0, I), G and G+ denote STFT and iSTFT, re-
spectively, and M denotes a filter computed from c for prior
adaptation. SpecGrad estimated a cepstrum-based spectral en-
velope from the spectrogram obtained by multiplying c with the
pseudoinverse of the mel-compression matrix (like the previous
paragraph) and used it as M. However, SpecGrad reported that
using the spectrogram from c directly did not provide satisfac-
tory results. In contrast, we experimentally verified that, unlike
the case of the DDPM algorithm on which SpecGrad is based,
using the spectrogram as M yields higher sound quality under
our denoising mapping and architecture. The experimental de-
sign and results are described in detail in the following sections.

4. Experiments
4.1. Data configurations and evaluation metrics

We adopted LibriTTS[30], a multi-speaker English dataset with
24 kHz sampling rate waveforms, for the training and evaluation
of the vocoder models. We used the “train-clean-360” dataset to
train the models, with 5% and 2% of the dataset for validation
and testing, respectively, with all speakers included in each of
the three splits. For ground-truth mel-spectrogram evaluation
(GT mel evaluation) including the ablation study, a “test-clean”
dataset was prepared. The STFT parameters used to extract
the 100-band, 0-12 kHz log-mel-spectrograms are 1024-point
Fourier transform, 256 sample frame shift, and 1024 sample
Hann window length.

Two objective evaluation metrics, PESQ and MR-STFT,
were used to evaluate the performance of each model. An open-
source library2 was used to calculate the wideband PESQ, and
the parameters required to calculate the MR-STFT metric were
set to the same values as those in Yamamoto et al. [11].

To clarify the comparison between the proposed model and
baselines, a 5-point mean opinion score (MOS) was used for the
TTS evaluation and a 7-point comparative MOS (CMOS) eval-
uation was used for GT mel evaluation. To collect 400 ratings
for each evaluation item, we randomly sampled 20 speech sam-
ples and collected 20 ratings for each sample from 20 listeners
located in the United States using Amazon Mechanical Turk.
The loudness of all speech samples used was normalized to -23
LUFS. Other details of the subjective evaluations were based on
Loizou’s work[31].

4.2. Model settings

The proposed model uses the hyperparameters of each block
that follow UnivNet-c32[13], with the number of dilated convo-
lutions reduced to three, each with a dilation of {1,3,9}, to im-
prove speed. The channel size of each convolution in the MRSD
was set to 16. The dimensions of the latent noise z and the
number of iterations T were set to 100 and 3, respectively. The
step embedding network used the structure proposed by Kong
et al. [19], and the mapping network used the same structure,
but the channel size of each layer was set to 256. The minimum
phase response based on the homomorphic filter method was
used to calculate the filter M. The same optimizer and learning
rate as UnivNet were used to train FastFit and all the models for
the ablation study up to 1M steps, with a batch size of 64. All
other architectural details followed the settings of the studies on
which they were based.

The performance of the proposed model was compared with
three baselines: UnivNet, FastDiff, and WaveFit. These mod-
els are based on three main methodologies of vocoder research:
GAN, DDPM, and fixed-point iteration. For UnivNet, we used
the “c32” version of our implementation. FastDiff was imple-
mented using the official repository3, with T = 4 as suggested
by Huang et al. [20]. We implemented WaveFit with T = 3 fol-
lowing Koizumi et al. [23], using an unofficial implementation4

of WaveGrad with 15.8M parameters as the base model. The
upsampling ratios were set to {4,4,4,2,2} to fit our experimen-
tal setting. To improve the training stability, we replaced the
GAN loss with an LSGAN, which resulted in more stable train-
ing and a lower auxiliary loss. All the models were trained up
to 1M steps using four NVIDIA V100 GPUs, and no additional
fine-tuning was applied.

For the multi-speaker TTS evaluation, we trained the
JDI-T[7] acoustic model with the adapter-based multi-speaker
methodology of Hsieh et al. [32] using the LibriTTS train-
clean-360 subset with 100 speakers. For the zero-shot TTS eval-
uation, we used an open-source zero-shot TTS program named
TorToiSe5. The recordings of the LibriTTS “test-clean” subset
with 10 speakers were input into the program with an “ultra-
fast” offset to synthesize mel-spectrograms for evaluation. Sen-
tences for all TTS evaluations were extracted from the utter-
ances of speakers who were not included in the training. All
speaker selection and data processing details for TTS evalua-
tions followed Hsieh et al. ’s approach.

2https://github.com/vBaiCai/python-pesq
3https://github.com/Rongjiehuang/FastDiff
4https://github.com/ivanvovk/WaveGrad
5https://github.com/neonbjb/tortoise-tts
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Table 1: The ablation study results.

Model PESQ↑ MR-STFT↓ CMOS↑
Recordings - - 0.251

FastFit 3.712 0.866 -
FastFit (U-Net) 3.754 0.868 0.062

Without AdaLN 3.411 0.974 -0.168
Without skip-connections 3.449 0.936 -0.199

yT ∼ Spectral envelope 3.422 0.969 -0.175
yT ∼ Griffin-Lim 3.685 0.872 0.069

Magnitude STFTs encoder 3.677 0.875 -0.031
Polar STFTs encoder Failed to train
Polar+Cartesian STFTs encoder Failed to train

5. Results
5.1. Ablation studies

We conducted ablation studies to evaluate the proposed im-
provements under the GT mel conditions. According to the re-
sults presented in Table 1, FastFit achieved the non-significant
objective and subjective metrics compared with U-Net with a
neural encoder. We observed significant destabilization of the
training when the model was trained without AdaLN, resulting
in worse metrics. To demonstrate that the proposed methodol-
ogy maintains quality by maintaining skip connections, we re-
moved all skip connections and connected only one STFT to the
first decoder block, which resulted in relatively poor metrics.

Moreover, we have made several attempts to define an
effective initial point yT . Our experiments computing yT

from the spectral envelope performed worse than the proposed
method of computing yT directly from the spectrogram from
c. We also attempted to convert the spectrogram to a wave-
form with 32 Griffin-Lim iterations and use it as yT . This did
not produce significant differences in metrics but resulted in a
slight reduction in generation speed, so we did not adopt it.

We were intrigued by Webber et al. [33]’s work with differ-
ent representations of STFT output and tested to find the opti-
mal one. The magnitude spectrogram, used as a representation,
showed no significant metric difference from the Cartesian form
of the proposed model. However, internal tests showed a de-
crease in quality in some samples; therefore, we did not adopt it.
For the polar form, training collapsed early on, so using phase
as a representation was not appropriate for the proposed model.

5.2. Comparison with baselines

To measure the speed of the evaluation models, we generated
6 second segments 20 times using an NVIDIA V100 GPU
and measured the average time. As shown in Table 2, Fast-

Fit achieved approximately twice the synthesis speed of the
iteration-based vocoders despite having approximately half the
number of parameters, and none of the metrics scored signif-
icantly worse in terms of speech quality. Although UnivNet’s
synthesis speed was superior to other baselines, it performed
poorly in the CMOS evaluation owing to the occasional blurring
of the harmonic component of the GT mel-spectrogram. Fast-
Diff performed best on PESQ but worst on MR-STFT, which
calculates the numerical distances. This is because the model
confused segments with noise-like spectral shapes, such as con-
sonants, breaths, and high-frequency spectral bands, with noise
and denoised them. WaveFit performed well overall but had the
slowest generation speed.

5.3. Application to text-to-speech synthesis

We characterized the mel-spectrograms generated by the mod-
els for two TTS evaluation tasks and found that the mel-
spectrograms for multi-speaker TTS had relatively blurry
shapes because they were not generated by high-quality models,
such as GAN or DDPM. In contrast, the mel-spectrograms for
zero-shot TTS had relatively more realistic shapes because they
used a DDPM-based acoustic model that produced high-quality
output regardless of the synthesis rate. However, each vocoder
was not fine-tuned using the predicted mel-spectrograms.

For multi-speaker TTS, FastFit produced better MOS
scores than UnivNet and FastDiff, with a slight difference from
WaveFit. For the zero-shot TTS, all models except FastDiff pro-
duced similar MOS. UnivNet was observed to produce noise
artifacts in some segments of the multi-speaker TTS experi-
ment, which may be responsible for its worse MOS. FastD-
iff recorded the worst MOS owing to the incorrect denoising
of noise-like components and produced blurred harmonic com-
ponents. The remaining models produced statistically similar
MOS, with FastFit (U-Net) producing the best results, but the
confidence intervals of the MOS overlapped.

6. Conclusion
By improving the architecture of an iteration-based neural
vocoder, we could double the generation rate while maintain-
ing a high fidelity. As the U-Net architecture is widely used in
speech processing applications, we expect our simple yet effec-
tive idea of replacing the encoder with STFTs to be applied in a
variety of speech-based research and applications in the future.
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Table 2: Results of comparison with baseline models. “Speed” indicates each model’s generation speed relative to real time.

Model complexity GT mel evaluation Multi-speaker TTS Zero-shot TTS

Model Params↓ Speed↑ PESQ↑ MR-STFT↓ CMOS↑ MOS↑ MOS↑
UnivNet 14.86M ×314.49 3.705 0.853 -0.295 3.46±0.06 3.84±0.09
FastDiff 15.36M ×52.35 3.786 1.385 0.078 3.32±0.07 3.68±0.10
WaveFit 15.85M ×43.10 3.639 0.921 0.072 3.70±0.08 3.83±0.09
FastFit 6.81M ×101.40 3.712 0.866 - 3.67±0.08 3.86±0.08
FastFit (U-Net) 12.94M ×59.88 3.754 0.868 0.062 3.75±0.07 3.90±0.09

Recordings - - - - 0.251 - -
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