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Abstract
Smart devices serviced by large-scale AI models necessitates
user data transfer to the cloud for inference. For speech ap-
plications, this means transferring private user information,
e.g., speaker identity. Our paper proposes a privacy-enhancing
framework that targets speaker identity anonymization while
preserving speech recognition accuracy for our downstream
task - Automatic Speech Recognition (ASR). The proposed
framework attaches flexible gradient reversal based speaker ad-
versarial layers to target layers within an ASR model, where
speaker adversarial training anonymizes acoustic embeddings
generated by the targeted layers to remove speaker identity. We
propose on-device deployment by execution of initial layers of
the ASR model, and transmitting anonymized embeddings to
the cloud, where the rest of the model is executed while pre-
serving privacy. Experimental results show that our method ef-
ficiently reduces speaker recognition relative accuracy by 33%,
and improves ASR performance by achieving 6.2% relative
Word Error Rate (WER) reduction.
Index Terms: speech privacy, embedding privacy, embedding
to audio synthesis, speech recognition.

1. Introduction
The increasing prevalence of voice driven human-computer in-
teraction services in appliances has raised concern with regard
to voice privacy and personal information protection. These
‘smart’ devices, ranging from cars to small watches, collect
speech utterances and acoustic events for various downstream
tasks or for training and evaluation in distributed settings [1].
Speech utterances hold user information such as speaker iden-
tity, gender etc. Privacy preservation is of critical importance to
protect reliability in private data sharing.

Various privacy preservation methods for speech have been
proposed in the literature. One solution is to manipulate speaker
identity related features through feature perturbation [2], voice
normalisation [3, 4], utterance slicing techniques [5], and dif-
ferential pitch anonymization [6]. State-of-the-art methods em-
ploy neural based speech synthesizer or voice converter to gen-
erate speech where the speaker identity information has been
removed [7,8]. However, these methods require employment of
additional synthesis modules and are computationally expen-
sive, which is unrealistic for on-device scenarios.

An alternative approach for speaker anonymization is to
learn speech representations invariant to speaker conditions.
Domain adversarial training trains a model to learn domain ag-
nostic representations [9]. Speaker based domain adversarial
training has been effective for anonymizing latent representa-
tions of ASR models (i.e., acoustic embeddings) [10,11]. How-
ever, it was observed that speaker invariant representations re-
sulted in a reduction of ASR performance [10]. Orthogonal

to this, recent work by [12] discuss a method where adding
speaker-labels and adaptive gradient scaling to domain adver-
sarial training improves ASR performance. However, they do
not target or discuss privacy.

In this paper, we propose a flexible gradient reversal
based speaker anonymization framework, which learns speaker
anonymous acoustic embeddings within an ASR model while
preserving its accuracy/performance (as depicted in Stage 1 in
Figure 1). The initial layers of ASR models learn generic acous-
tic and prosody features, and the last layers learn more task-
dependant semantic and syntax level features [13–15]. The
research focuses on embeddings at the initial layers of ASR
models. Furthermore, we introduce an acoustic embedding-to-
waveform synthesis model to synthesise the corresponding au-
dio waveform of the acoustic embedding for better understand-
ing and interpretation (as shown in Stage 2 in Figure 1).

The main contributions of this paper are as follows:

1.We propose a method to use single gradient reversal at flexi-
ble layers of an ASR model to effectively mitigate speaker in-
formation from the representations generated by initial layers
of the model without increasing its WER. In the analyses, we
observed that speaker identification accuracy was reduced by
22% at layer 3 (CE3), 7.3% at layer 5 (CE5), and 6% at layer
7 (CE7) compared to the original speech waveform (Table
2). Performance of the models trained with these representa-
tions was improved by 8.6% WER on average. The proposed
method does not require computationally expensive voice-
conversion/speech-synthesis models for anonymization and
operates on ASR embeddings.

2.Our results show that while having improved ASR per-
formance, the speaker adversarial training has anonymized
acoustic embeddings with gradient scaling. A detailed anal-
ysis of the effects of gradient scaling, domain loss scaling
and model layer hierarchies are presented with performance
of models and their convergence properties. Furthermore, the
mutual speaker information (depicted in Stage 3 in Figure 1)
among the speaker embeddings are analysed and presented.

3.Contrary to the previous claims [16], we show that acous-
tic embeddings can be re-synthesised to intelligible audio
recordings irrespective of certain types of convolution or
feed-forward layers in network architectures of the models.

2. Flexible Gradient Reversal Speaker
Anonymization (FleGReSA)

The proposed framework with ASR model training (Stage 1),
and evaluation phases (Stage 2 & 3) are shown in Figure 1.
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Figure 1: Our framework proposed for speaker anonymization and evaluation with acoustic embeddings.
2.1. Stage 1 - Training models and Extracting Embeddings
2.1.1. Training ASR Models

The ASR model training is shown in Figure 1a. We used the
conformer model [17] as the baseline ASR model consisting of
conformer blocks. A conformer block consists of layer normal-
isation, Feed-forward, Multi-Headed Self-Attention and Con-
volution modules [17]. An x-vector [18] speaker classification
model is used with the ASR model for speaker anonymization
through speaker adversarial training as described below.

2.1.2. Speaker Adversarial Training (SAT)
The SAT aims to learn speaker invariant representations at dif-
ferent layers, and removes speaker specific information from
acoustic embeddings [9, 12]. We add gradient reversal layer at
different hierarchies of the encoder, with relevant gradient scal-
ing, and make the number of speaker invariant layers flexible.
The gradient reversal is a ‘pseudo function’ [9] G(·), which de-
fines (a) forward and (b) backward pass with input xkf by

(a) G(xkf ) = xkf and (b)
dG(xkf )

dxkf

= −α · I (1)

where xkf is the output of the ith layer where the gradient rever-
sal G(·) is applied, α is the gradient scaling factor, and I is the
identity matrix. In the forward-pass (a), it follows the identity
transformation, and in the backward-pass (b), it is multiplied
by −α. When gradient reversal is added at the ith encoder
block, the ASR model is split in: (1) feature extractor xkf =

Gf (xk, θf ) which comprises the 1st to the ith ASR encoder
block; (2) speaker invariant encoder xkm = Gm(xkf , θm) de-
fined by the remaining layers in the ASR encoder; and (3) ASR
decoder Gy(xkm , θy). The kth input sample to the ASR model
is xk, and θf , θm and θy denote the parameters in the feature
extractor, speaker invariant encoder and decoder, respectively.

The discriminative speaker classifier Gd(xkf , θd), which is
used to enforce invariant representations, takes input G(xkf )
where θd denotes its parameters. The ASR model loss Ly and
the speaker classifier model loss Ld are defined by [19–21].
Ly (θf , θm, θy)=Ly(Gy(Gm(Gf(xk, θf ) , θm) , θy) , yk) (2)

Ld (θf , θd) =Ld (Gd (Gf (xk, θf ) , θd) , sk) (3)

where yk and sk are the transcription label and speaker label for
the kth sample, respectively. Hence, the final loss is

L(θf , θm, θy, θd) =
1

K

K∑

k=1

Lk
y(θf , θm, θy)

+
1

K

K∑

k=1

λ · Lk
d(θf , θd) (4)

where the total number of samples is K and λ is speaker loss
regularizer. The gradient of the loss with respect to the input
can be written by (dropping arguments of the losses for clarity)

∂L

∂xk
=

∂xkf

∂xk
· ∂L

∂xkf

=
∂xkf

∂xk
·
(
∂Ly

∂xkf

+
dG(xkf )

dxkf

· ∂Ld

∂G(xkf )

)

=
∂xkf

∂xk
·
(

∂Ly

∂xkf

−α
∂Ld

∂xkf

)
. (5)

where the term in bold is the gradient injected for speaker ad-
versarial training. The speaker classifier used in the speaker
adversarial training is based on x-vector [22] model. Unlike the
previous works [10, 11], the speaker adversarial classifier is not
a pre-trained model and it is trained jointly with the ASR model
(Stage 1). After training, the speaker adversarial classifier is re-
moved from the ASR model where the layers are trained to have
speaker invariant acoustic representations, and only θf , θm, and
θy are used for decoding.

2.2. Stage 2 - Training Embedding-to-audio Synthesis and
Speaker Recognition Models

2.2.1. Neural Embedding to Speech Synthesis

Contrary to the previous methods [7, 8], where a voice conver-
sion approach is used to convert the audio to a different speakers
voice, we directly anonymize the acoustic embeddings from the
ASR model. The speaker privacy in the anonymized acoustic
embedding is evaluated using speaker classifiers [10].

The discriminative speaker classifiers may be sensitive
to small changes (e.g., perturbation difference) in embedding
spaces among different ASR models [23, 24]. Moreover, the
same utterances may have different embeddings obtained from
different ASR models. Therefore, comparing embeddings pro-
vided by different ASR models to achieve speaker privacy is not
practical. As a result, an extra stage is added to be able to listen
to the audio synthesized from acoustic embeddings.

We propose a method to employ acoustic embeddings for
audio synthesis and evaluate the anonymization of the generated
acoustic embeddings (Stage 2 in Figure 1b). The embedding-
audio synthesis model is based on HiFi GAN, and a mixture of
multi-period and multi-scale sub-discriminators [25, 26]. Dur-
ing inference, it takes embeddings from different layers and pro-
duces high resolution audio synthesis. If xki is the acoustic em-
bedding obtained at the ith layer for waveform input xk, then
the synthesised output of the generator x̂ki = Gsyn(xki) has
the same dimension as xk. According to [26], the training loss
for the embedding-audio synthesis training is the summation of
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generator loss Lmel and sub-discriminator loss LFM given by

Lmel =
1

K

K∑

k=1

||ϕ(xk)− ϕ(x̂ki)||1, (6)

LFM (D) =
1

K

K∑

k=1

T∑

i=1

1

Ni
||Di(xk)−Di(x̂ki)||1 (7)

where ϕ is the function used for calculating spectrogram, T is
the total number of layers in a discriminator and Ni is the fea-
ture dimension of the ith layer output denoted by Di. Mel-
spectrogram loss (Lmel) and feature matching loss (LFM ) cal-
culate ℓ1 distances between spectrograms and those between
discriminator outputs during training. The discriminator in
the synthesis module comprises Q sub-discriminators {Dq}Qq=1

which are used in the final losses:

LGsyn =

Q∑

q=1

[
1

K

K∑

k=1

[
(Dq(xk)− 1)2 + (Dq(x̂ki))

2]

+ λFMLFM (Dq)

]
+ λmelLmel, (8)

LD =

Q∑

q=1

1

K

K∑

k=1

[
(Dq(x̂ki)− 1)2

]
(9)

where λmel and λFM are loss scaling parameters.

2.2.2. Training Speaker Embedding and Identification Models

An x-vector model [22] pre-trained on Voxceleb1 [27] and
Voxceleb2 [28] is fine-tuned on LibriSpeech data for learning
speaker representations. This model shown in Figure 1c is
only used to evaluate the synthesized acoustic embeddings for
speaker identification performance.

2.3. Stage 3 - Speaker Anonymization Evaluation

Speaker anonymization is evaluated on the waveforms synthe-
sized from the acoustic embeddings using the generator de-
scribed in Section 2.2.1 as depicted in Figure 1d. The acous-
tic embeddings are obtained from different layers of the ASR
model and the waverforms are evaluated with the fine-tuned x-
vector model (Section 2.2.2).

3. Experimental Setup
3.1. Experimental Setup

Data: The publicly available LibriSpeech [29] corpus has been
used for ASR model training (in Figure 1a), embedding extrac-
tion (in Figure 1a) and embedding-audio synthesis (in Figure
1b). The train-clean-100 (100 hours) split has been used for
training. The dev-clean, test-clean, and test-other splits have
been used for validation and testing. Additionally, we have
combined train-clean-100 and train-clean-360 into train-clean-
460 (460 hours clean speech). This combined set has been used
for the training of embedding-to-audio synthesis.

For the speaker adversarial ASR training, the labels for the
ASR and speaker classifier models are necessary. The speaker
classifier model requires same speakers for training and eval-
uation. Therefore, before the training, some utterances have
been randomly selected and separated from training data for
each speaker to create (test-adv). The speaker classifier shown
in Figure 1c is fine-tuned with dev-clean, 70% of the speaker,
leaving 30% for evaluation (dev-clean-te).

Train
Data GRL α/λ

test-adv
WER (%)

dev-clean
WER (%)

test-clean
WER (%)

test-other
WER (%)

train
clean
100

- - - 6.14 6.18 16.28

CE3

0.01/0.5 4.55 5.38 5.58 16.27
0.1/0.3 3.23 5.48 5.72 15.94
1.5/0.3 3.48 6.19 6.77 18.09
1.0/0.1 3.51 6.06 6.47 18.27
0.5/0.5 3.08 5.76 6.23 17.63

1.0/0.05 3.85 5.68 5.92 17.57

CE5

0.5/0.5 2.81 6.27 6.74 18.31
0.1/0.3 3.73 5.34 5.75 15.96

0.01/0.3 3.69 5.26 5.47 16.04
0.5/0.05 2.78 5.54 5.80 16.85
1.0/0.1 3.36 5.89 6.27 17.36

CE7
1.0/0.05 4.29 5.78 6.11 17.55
0.05/0.3 3.69 5.41 5.64 15.92

CE10
1.0/0.3 3.59 5.95 6.31 17.46
0.1/0.3 4.02 5.47 5.88 17.09
0.5/0.5 4.12 6.12 6.71 17.93

CD4
0.5/0.3 3.27 5.60 5.94 17.30
0.5/0.5 4.21 5.63 5.87 17.32
1.0/0.1 4.12 5.42 6.10 17.02

Table 1: An analysis of the ASR performance (WER) applying
gradient reversal at different layers of the ASR model with dif-
ferent α and λ, where GRL denotes the gradient reversal layer.

Setup: We performed the experiments in three stages. In
the first stage (Figure 1a), an ASR model is trained with speaker
adversarial loss. In the second stage (Figure 1b), acoustic
embeddings are extracted from different layers, and then the
embedding-audio GAN model is trained to reconstruct the orig-
inal audio. The hyperparameters for the GAN training are sim-
ilar to [26] V1. The synthesis models are trained with the clean
460 hours of LibriSpeech data. In the third stage (Figure 1c), the
embedding-audio GAN generator is used to synthesize audio
from acoustic embeddings to evaluate the speaker anonymity
compared to the original audio utterances and baseline. The
second and third stages are evaluation stages. The experiments
were implemented using Speechbrain [21].

Baseline: A conformer [17] model with 12 encoder and 4
decoder blocks has been used as the ASR baseline model. The
model has 13.3M trainable parameters and it is decoded with a
language model shallow fusion [21], beam size 1. The baseline
model is used both for training the ASR model and extracting
embeddings for audio synthesis. The baseline model embed-
dings are compared with the FleGReSA embeddings for evalu-
ating their anonymity compared to the original audio samples.

3.2. Evaluation

The ASR model is evaluated using Word Error Rate (WER),
and speaker classifier is evaluated using the unweighted accu-
racy (WA) metric. ASR performance is evaluated with mod-
els where gradient reversal layers are applied at their different
layers with different scaling α and λ values. The goal is to
analyse the impact of gradient reversal, and stabilise ASR train-
ing with scaling weights in different layers when gradient re-
versal is applied. The ASR decoding setup is same as the base-
line. The speaker anonymization of the acoustic embeddings
obtained from different layers of the ASR model is evaluated
using the speaker identification accuracy based on x-vector as
mentioned in Section 2.2.2.

4. Results & Discussion
The ASR performance of the speaker adversarial ASR is shown
in Table 1 where: CE denotes conformer encoder; CD denotes
conformer decoder; the number following CE or CD is the em-
bedding layer number; α and λ are scaling factors used in Eq.
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(1) and (4). Instead of applying the adversarial layer only at the
end of the encoder [10], we propose flexible speaker adversarial
at various hierarchies of the encoder/decoder model and found
ASR performance improvements. The test-adv WER shows the
ASR performance on utterances which have common speakers
with the training data but not common utterances. The other
test sets are standard dev-clean, test-clean and test-other. The
overall results given in Table 1 show that the ASR performance
obtained from speaker adversarial training improves across the
test scenarios compared to the baseline (first row). We observe
that adding GRL in the lower layers does not decrease the ASR
performance. The weight of the gradient reversal layer is crucial
in the initial convergence and overall performance of the ASR
model 1. The results show that that high values for α and λ pre-
vent the ASR model from converging. Furthermore, the weight
of the gradient reversal layer α is also dependant on the layer
of the ASR model where the gradient reversal layer is injected,
as the linguistic and speaker information are highly entangled
at the initial layers of the encoder of the ASR model [13, 14].
The α and λ weights need to be smaller to make the ASR model
stable as lower negative speaker gradients distort the sequential
linguistic entanglement in the acoustic embeddings, and it loses
the linguistic boundary information. As a result, the ASR model
mostly predicts blanks and misaligned word sequences.

Next, we analyze how the layers can become speaker invari-
ant after the intersection of gradient reversal layers. In Table 2,
the higher the speaker accuracy, the less anonymous the speaker
representations are. The results show with adversarial training,
the ASR model embeddings are more speaker redundant. The
adv CE3D model shows when the gradient reversal is at layer
3 (CE3) and the embedding is extracted from layer 5 (CE5),
the acoustic embeddings are more anonymous compared to the
acoustic embeddings extracted from layer 3. This suggests that
we can control the trade-off between embedding speaker quality
and downstream task performance by flexible adversarial train-
ing. Thereby, we achieve speaker anonymity in acoustic em-
beddings without expensive efforts like voice morphing or con-
version [3, 6, 7]. Next, we compare the audio waveform recon-
structed using the baseline model to the original audio wave-
form. We observe that plenty of speaker information remains in
the acoustic embeddings at the convolution and fully-connected
layers obtained from the baseline.

The speaker anonymization of the embeddings is further as-
sessed computing the mutual information (MI) of random vari-
ables of the embeddings. For this purpose, we compute the MI
using embeddings x̂b

ki
obtained at the ith layer of the baseline

model and the embeddings x̂a
ki

obtained at the ith layer of the
anonymized model. The MI is computed between the original
waveform xk and the synthesized audio x̂ki using

I(xk, x̂ki)=
∑

xk,x̂ki

p(xk, x̂ki) log
p(xk, x̂ki)

p(xk)p(x̂ki)
. (10)

The frequency of the MI difference I(xk, x̂
b
ki
)−I(xk, x̂

a
ki
)

is plotted as a histogram to analyze the information loss among
samples in Figure 2. In Figure 2a, the blue line denotes the
speaker MIs computed with I(xk, x̂

b
ki
) for dev-clean where x̂b

ki

is generated with the baseline synthesised model (i.e. Baseline
in Table 2). The orange line in Figure 2a denotes the speaker
MIs calculated as I(xk, x̂

a
ki
) where x̂a

ki
is generated with the

anonymized model (i.e. adv CE3D v1 in Table 2). The dif-
ference between these two curves is displayed in Figure 2b as a
histogram. These results show evidence of the speaker informa-
tion reduction using the anonymized model where a substantial

Train
Data

Model GRL dev-clean
WER(%)

α/λ AE dev-clean-te
SPK-ACC

train
clean
100

Original audio - - - - 96.9

Baseline - 6.14 -
CE3 86.6
CE5 22.1
CE7 6.4

adv CE1 CE1 5.58 0.5/0.05
CE3 73.9
CE4 41.7
CE5 42.9

adv CE3D v1 CE3 5.76 0.5/0.5
CE3 64.6
CE4 33.8
CE5 14.8

adv CE3D v2 CE3 6.06 1.0 / 0.1
CE3 71.1
CE5 18.0

adv CE5D CE5 5.54 0.5/0.05
CE5 18.2
CE6 0.8
CE7 0.4

adv CE10D CE10 5.48 0.5/ 0.3
CE3 68.8
CE5 70.2

Table 2: Speaker accuracy on the re-synthesised waveforms
from acoustic embeddings at different layers, where AE denotes
the acoustic embedding extraction point and SPK-Acc denotes
the unweighted speaker accuracy (%).

(a) (b)
Figure 2: (a) Comparison of MI computed using speaker em-
beddings obtained from baseline and FleGReSA. (b) Frequency
of difference of the MI.

proportion of the utterances is reduced after speaker anonymiza-
tion. These results corroborate the findings observed in Table 2.

5. Conclusion
In this paper, a flexible gradient reversal speaker anonymiza-
tion (FleGReSA) and evaluation framework is presented. One
of the main benefits of the proposed framework is performing
anonymization as an integral part of the ASR model. Once we
train the ASR model with the domain adversarial speaker clas-
sifier, the latter is discarded. The ASR model is solely em-
ployed to provide the anonymous acoustic embeddings. We
showed that the training is flexible depending upon the acous-
tic embedding extraction layer and desired downstream task.
The results show that the ASR model is stable and performs
better with the adversarial training, while providing significant
speaker anonymization on the acoustic embeddings. Experi-
mental results obtained using the LibriSpeech indicate that in
the best case the proposed approach achieves a remarkable re-
duction in speaker recognition accuracy by an absolute 22%.
Furthermore, the best ASR performance among the models im-
proves the relative WER of the ASR model by 14%. Further-
more, we have presented an embedding to audio high-quality
waveform synthesis model not only comparing speaker infor-
mation but subjectively listening to the synthesized audio of
layer-wise embeddings.
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